IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8163-d695705.html
   My bibliography  Save this article

The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)

Author

Listed:
  • Toyoto Sato

    (Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan)

  • Shin-ichi Orimo

    (Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
    Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan)

Abstract

REMgNi 4 -based alloys, RE (2−x) Mg x Ni 4 (RE: rare-earth metals; 0 < x < 2), with a AuBe 5 -type crystal structure, exhibit reversible hydrogen absorption and desorption reactions, which are known as hydrogen storage properties. These reactions involve formation of three hydride phases. The hydride formation pressures and hydrogen storage capacities are related to the radii of the RE (2−x) Mg x Ni 4 , which in turn are dependent on the radii and compositional ratios of the RE and Mg atoms. The crystal structures formed during hydrogen absorption reactions are the key to understanding the hydrogen storage properties of RE (2−x) Mg x Ni 4 . Therefore, in this review, we provide an overview of the crystal structures in the hydrogen absorption reactions focusing on RE (2−x) Mg x Ni 4 .

Suggested Citation

  • Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8163-:d:695705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    2. Sangryun Kim & Hiroyuki Oguchi & Naoki Toyama & Toyoto Sato & Shigeyuki Takagi & Toshiya Otomo & Dorai Arunkumar & Naoaki Kuwata & Junichi Kawamura & Shin-ichi Orimo, 2019. "A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    2. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    3. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    4. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    5. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    6. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
    7. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    8. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    10. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    11. Lin-Jie Xie & Jun-Cheng Jiang & An-Chi Huang & Yan Tang & Ye-Cheng Liu & Hai-Lin Zhou & Zhi-Xiang Xing, 2022. "Calorimetric Evaluation of Thermal Stability of Organic Liquid Hydrogen Storage Materials and Metal Oxide Additives," Energies, MDPI, vol. 15(6), pages 1-13, March.
    12. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Zhang, Jun & Li, Huabo & Zhang, Hao & Zhu, Yiming & Mi, Gang, 2016. "Porously hierarchical Cu@Ni cubic-cage microstructure: Very active and durable catalyst for hydrolytically liberating H2 gas from ammonia borane," Renewable Energy, Elsevier, vol. 99(C), pages 1038-1045.
    14. Haiming Deng & Lukas Zhao & Kyungwha Park & Jiaqiang Yan & Kamil Sobczak & Ayesha Lakra & Entela Buzi & Lia Krusin-Elbaum, 2022. "Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Ádám Révész & Marcell Gajdics, 2021. "Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review," Energies, MDPI, vol. 14(19), pages 1-31, October.
    16. Ádám Révész, 2023. "Improved Hydrogen Storage Performance of Novel Metal Hydrides and Their Composites," Energies, MDPI, vol. 16(8), pages 1-3, April.
    17. Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.
    18. Omar Mounkachi & Asmae Akrouchi & Ghassane Tiouitchi & Marwan Lakhal & Elmehdi Salmani & Abdelilah Benyoussef & Abdelkader Kara & Abdellah El Kenz & Hamid Ez-Zahraouy & Amine El Moutaouakil, 2021. "Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH 2 Thin Films," Energies, MDPI, vol. 14(22), pages 1-10, November.
    19. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    20. Hyun Kyu Shin & Sung Kyu Ha, 2023. "A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles," Energies, MDPI, vol. 16(13), pages 1-36, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8163-:d:695705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.