IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2236-d774566.html
   My bibliography  Save this article

Calorimetric Evaluation of Thermal Stability of Organic Liquid Hydrogen Storage Materials and Metal Oxide Additives

Author

Listed:
  • Lin-Jie Xie

    (School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China)

  • Jun-Cheng Jiang

    (School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China)

  • An-Chi Huang

    (School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China)

  • Yan Tang

    (School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China)

  • Ye-Cheng Liu

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Hai-Lin Zhou

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Zhi-Xiang Xing

    (School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China)

Abstract

The effects of two different metal oxide catalysts, SnO and Li 2 O, on the dehydrogenation temperature of Carbazole and N-Ethylcarbazole (NE), respectively, were investigated by the Thermogravimetric analyzer and Differential Scanning Calorimetry. Thermogravimetric experiments were performed with 10wt% SnO and Li 2 O added to Carbazole and N-Ethylcarbazole, respectively, and compared to pure Carbazole and N-Ethylcarbazole. The results showed that the dehydrogenation temperature of N-Ethylcarbazole was lower than that of Carbazole, and the dehydrogenation temperature of N-Ethylcarbazole +SnO was the lowest, and SnO is an ideal dehydrogenation catalyst for N-Ethylcarbazole. Experiments using Differential Scanning Calorimetry and a Thermogravimetric analyzer showed that with the addition of catalyst, the activation energy of the mixture was more significant and stable, and the thermal hazard was reduced, whereas the relative dehydrogenation temperature was increased. This study provides important information for improving the design of dehydrogenation catalysts for organic liquid hydrogen storage processes.

Suggested Citation

  • Lin-Jie Xie & Jun-Cheng Jiang & An-Chi Huang & Yan Tang & Ye-Cheng Liu & Hai-Lin Zhou & Zhi-Xiang Xing, 2022. "Calorimetric Evaluation of Thermal Stability of Organic Liquid Hydrogen Storage Materials and Metal Oxide Additives," Energies, MDPI, vol. 15(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2236-:d:774566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. C. Dillon & K. M. Jones & T. A. Bekkedahl & C. H. Kiang & D. S. Bethune & M. J. Heben, 1997. "Storage of hydrogen in single-walled carbon nanotubes," Nature, Nature, vol. 386(6623), pages 377-379, March.
    2. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Artificial Intelligence-Based Optimization Applications in Traditional Active Maritime Collision Avoidance," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    2. Kai Ma & Erfei Lv & Di Zheng & Weichun Cui & Shuai Dong & Weijie Yang & Zhengyang Gao & Yu Zhou, 2021. "A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage," Energies, MDPI, vol. 14(20), pages 1-8, October.
    3. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    4. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    5. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    6. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    7. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    8. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    9. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    10. Niaz Ali Khan & Muhammad Humayun & Muhammad Usman & Zahid Ali Ghazi & Abdul Naeem & Abbas Khan & Asim Laeeq Khan & Asif Ali Tahir & Habib Ullah, 2021. "Structural Characteristics and Environmental Applications of Covalent Organic Frameworks," Energies, MDPI, vol. 14(8), pages 1-21, April.
    11. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
    12. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    13. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
    15. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    16. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Zhang, Jun & Li, Huabo & Zhang, Hao & Zhu, Yiming & Mi, Gang, 2016. "Porously hierarchical Cu@Ni cubic-cage microstructure: Very active and durable catalyst for hydrolytically liberating H2 gas from ammonia borane," Renewable Energy, Elsevier, vol. 99(C), pages 1038-1045.
    18. Haiming Deng & Lukas Zhao & Kyungwha Park & Jiaqiang Yan & Kamil Sobczak & Ayesha Lakra & Entela Buzi & Lia Krusin-Elbaum, 2022. "Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Ádám Révész & Marcell Gajdics, 2021. "Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review," Energies, MDPI, vol. 14(19), pages 1-31, October.
    20. Ádám Révész, 2023. "Improved Hydrogen Storage Performance of Novel Metal Hydrides and Their Composites," Energies, MDPI, vol. 16(8), pages 1-3, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2236-:d:774566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.