IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v386y1997i6623d10.1038_386377a0.html
   My bibliography  Save this article

Storage of hydrogen in single-walled carbon nanotubes

Author

Listed:
  • A. C. Dillon

    (National Renewable Energy Laboratory)

  • K. M. Jones

    (National Renewable Energy Laboratory)

  • T. A. Bekkedahl

    (National Renewable Energy Laboratory)

  • C. H. Kiang

    (Almaden Research Center)

  • D. S. Bethune

    (Almaden Research Center)

  • M. J. Heben

    (National Renewable Energy Laboratory)

Abstract

Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

Suggested Citation

  • A. C. Dillon & K. M. Jones & T. A. Bekkedahl & C. H. Kiang & D. S. Bethune & M. J. Heben, 1997. "Storage of hydrogen in single-walled carbon nanotubes," Nature, Nature, vol. 386(6623), pages 377-379, March.
  • Handle: RePEc:nat:nature:v:386:y:1997:i:6623:d:10.1038_386377a0
    DOI: 10.1038/386377a0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/386377a0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/386377a0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tunç, Nihat & Rakap, Murat, 2020. "Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis," Renewable Energy, Elsevier, vol. 155(C), pages 1222-1230.
    2. Suárez, S.H. & Chabane, D. & N'Diaye, A. & Ait-Amirat, Y. & Djerdir, A., 2022. "Static and dynamic characterization of metal hydride tanks for energy management applications," Renewable Energy, Elsevier, vol. 191(C), pages 59-70.
    3. Takeo Oku, 2014. "Hydrogen Storage in Boron Nitride and Carbon Nanomaterials," Energies, MDPI, vol. 8(1), pages 1-19, December.
    4. Niaz Ali Khan & Muhammad Humayun & Muhammad Usman & Zahid Ali Ghazi & Abdul Naeem & Abbas Khan & Asim Laeeq Khan & Asif Ali Tahir & Habib Ullah, 2021. "Structural Characteristics and Environmental Applications of Covalent Organic Frameworks," Energies, MDPI, vol. 14(8), pages 1-21, April.
    5. Andreas Züttel, 2007. "Hydrogen storage and distribution systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(3), pages 343-365, March.
    6. Lin-Jie Xie & Jun-Cheng Jiang & An-Chi Huang & Yan Tang & Ye-Cheng Liu & Hai-Lin Zhou & Zhi-Xiang Xing, 2022. "Calorimetric Evaluation of Thermal Stability of Organic Liquid Hydrogen Storage Materials and Metal Oxide Additives," Energies, MDPI, vol. 15(6), pages 1-13, March.
    7. Yong, Hui & Wei, Xin & Hu, Jifan & Yuan, Zeming & Wu, Ming & Zhao, Dongliang & Zhang, Yanghuan, 2020. "Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy," Renewable Energy, Elsevier, vol. 162(C), pages 2153-2165.
    8. Ho Nguyen, Dong & Hoon Kim, Ji & To Nguyen Vo, Thi & Kim, Namkeun & Seon Ahn, Ho, 2022. "Design of portable hydrogen tank using adsorption material as storage media: An alternative to Type IV compressed tank," Applied Energy, Elsevier, vol. 310(C).
    9. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    10. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan & Cyril Sunday Ume, 2021. "Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review," Energies, MDPI, vol. 14(20), pages 1-33, October.
    11. Bhattacharyya, Rupsha & Mohan, Sadhana, 2015. "Solid state storage of hydrogen and its isotopes: An engineering overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 872-883.
    12. Salam, Kamoru A. & Velasquez-Orta, Sharon B. & Harvey, Adam P., 2016. "A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1179-1198.
    13. Tang, Chenglong & Zhang, Yingjia & Huang, Zuohua, 2014. "Progress in combustion investigations of hydrogen enriched hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 195-216.
    14. Kai Ma & Erfei Lv & Di Zheng & Weichun Cui & Shuai Dong & Weijie Yang & Zhengyang Gao & Yu Zhou, 2021. "A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage," Energies, MDPI, vol. 14(20), pages 1-8, October.
    15. Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
    16. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    17. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    18. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Bai, Wenjuan & Chu, Dianming & Liu, Zhiming & Ji, Zongchao & Wang, Peng & Li, Yan & He, Yan, 2023. "Thermotropic flash assembly energy of carbon nanotube in liquid phase based on electrical energy," Applied Energy, Elsevier, vol. 332(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:386:y:1997:i:6623:d:10.1038_386377a0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.