IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp457-469.html
   My bibliography  Save this article

Hydrogen storage: Materials, methods and perspectives

Author

Listed:
  • Niaz, Saba
  • Manzoor, Taniya
  • Pandith, Altaf Hussain

Abstract

The review focuses on various hydrogen producing and storing methods that can be employed for creating a hydrogen economy. The latest advancements that have been made on different hydrogen storing materials and hydrogen storing technologies which have proven useful both on gravimetric and volumetric basis, have been highlighted. The encouraging and hopeful aspect of their developments is that the most of the materials are approaching the hydrogen storing capacity requirement that have been laid down by DOE. The classification of different systems has been done on basis of their storage mechanism, keeping in mind their advantages and disadvantages while they tend to store hydrogen both in the atomic and molecular form.

Suggested Citation

  • Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:457-469
    DOI: 10.1016/j.rser.2015.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. C. Dillon & K. M. Jones & T. A. Bekkedahl & C. H. Kiang & D. S. Bethune & M. J. Heben, 1997. "Storage of hydrogen in single-walled carbon nanotubes," Nature, Nature, vol. 386(6623), pages 377-379, March.
    2. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    3. Ping Chen & Zhitao Xiong & Jizhong Luo & Jianyi Lin & Kuang Lee Tan, 2002. "Interaction of hydrogen with metal nitrides and imides," Nature, Nature, vol. 420(6913), pages 302-304, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    2. Thi-Thu Le & Claudio Pistidda & Julián Puszkiel & María Victoria Castro Riglos & David Michael Dreistadt & Thomas Klassen & Martin Dornheim, 2021. "Enhanced Hydrogen Storage Properties of Li-RHC System with In-House Synthesized AlTi 3 Nanoparticles," Energies, MDPI, vol. 14(23), pages 1-16, November.
    3. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    4. Tunç, Nihat & Rakap, Murat, 2020. "Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis," Renewable Energy, Elsevier, vol. 155(C), pages 1222-1230.
    5. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    7. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    8. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Sebastiano Garroni & Antonio Santoru & Hujun Cao & Martin Dornheim & Thomas Klassen & Chiara Milanese & Fabiana Gennari & Claudio Pistidda, 2018. "Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage," Energies, MDPI, vol. 11(5), pages 1-28, April.
    10. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Niaz Ali Khan & Muhammad Humayun & Muhammad Usman & Zahid Ali Ghazi & Abdul Naeem & Abbas Khan & Asim Laeeq Khan & Asif Ali Tahir & Habib Ullah, 2021. "Structural Characteristics and Environmental Applications of Covalent Organic Frameworks," Energies, MDPI, vol. 14(8), pages 1-21, April.
    12. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    13. Kai Ma & Erfei Lv & Di Zheng & Weichun Cui & Shuai Dong & Weijie Yang & Zhengyang Gao & Yu Zhou, 2021. "A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage," Energies, MDPI, vol. 14(20), pages 1-8, October.
    14. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    15. Kang, Dong Woo & Lee, Wonhyeong & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix," Energy, Elsevier, vol. 292(C).
    16. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Luiz F. Rodrigues & Alessandro Ramos & Gabriel de Araujo & Edson Silveira & Marcelo Ketzer & Rogerio Lourega, 2019. "High-Pressure and Automatized System for Study of Natural Gas Hydrates," Energies, MDPI, vol. 12(16), pages 1-14, August.
    18. Lin-Jie Xie & Jun-Cheng Jiang & An-Chi Huang & Yan Tang & Ye-Cheng Liu & Hai-Lin Zhou & Zhi-Xiang Xing, 2022. "Calorimetric Evaluation of Thermal Stability of Organic Liquid Hydrogen Storage Materials and Metal Oxide Additives," Energies, MDPI, vol. 15(6), pages 1-13, March.
    19. Bhattacharyya, Rupsha & Mohan, Sadhana, 2015. "Solid state storage of hydrogen and its isotopes: An engineering overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 872-883.
    20. Judit Farrando-Perez & Rafael Balderas-Xicohtencatl & Yongqiang Cheng & Luke Daemen & Carlos Cuadrado-Collados & Manuel Martinez-Escandell & Anibal J. Ramirez-Cuesta & Joaquin Silvestre-Albero, 2022. "Rapid and efficient hydrogen clathrate hydrate formation in confined nanospace," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:457-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.