IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000848.html
   My bibliography  Save this article

Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage

Author

Listed:
  • Moon, Seokyoon
  • Lee, Yunseok
  • Seo, Dongju
  • Lee, Seungin
  • Hong, Sujin
  • Ahn, Yun-Ho
  • Park, Youngjune

Abstract

The so-called blue hydrogen production process, integrates conventional fossil fuel-based production methods with carbon capture and storage technologies. This combination reduces total CO2 emissions, compared to conventional grey fossil-fuel-based hydrogen production, and can be implemented more rapidly than renewable energy-based water-splitting green hydrogen production. Recently, hydrogen-natural gas blends (HNGB) have been proposed as a practical near-term option, because the blended H2 can be transported through existing natural gas pipelines. Clathrate hydrates could be a feasible way to store the HNGB in intermediate fuelling stations. In this study, we investigated and determined the critical hydrogen concentration (CHC) of HNGB hydrates and their formation kinetic patterns. The results suggest that including natural gas components (e.g., CH4 and C2H6) significantly affects the level of H2 occupation in the structural cages of the clathrate hydrates. Multiple hydrogen molecules were observed to occupy both small and large cages in all cases. Specifically, up to two and four H2 molecules occupied small and large cages, respectively, of the synthesized clathrate hydrate, which exhibited a critical H2 concentration when the feed gas ratio of CH4, C2H6, and H2 was 27:3:70 mol%. The kinetic properties were also determined for designing clathrate-based HNGB storage media. These findings provide practical insights for developing clathrate hydrate-based HNGB storage media and transportation systems in the near future.

Suggested Citation

  • Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000848
    DOI: 10.1016/j.rser.2021.110789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    2. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    3. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    4. Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
    3. Omran, Ahmed & Nesterenko, Nikolay & Valtchev, Valentin, 2022. "Zeolitic ice: A route toward net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    5. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. Zheng, Junjie & Loganathan, Niranjan Kumar & Zhao, Jianzhong & Linga, Praveen, 2019. "Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas," Applied Energy, Elsevier, vol. 249(C), pages 190-203.
    3. Xu, Chun-Gang & Xie, Wen-Jun & Chen, Guo-Shu & Yan, Xiao-Xue & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis," Energy, Elsevier, vol. 198(C).
    4. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    5. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    6. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    7. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    8. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    9. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Maria Mitu & Codina Movileanu & Venera Giurcan, 2021. "Deflagration Characteristics of N 2 -Diluted CH 4 -N 2 O Mixtures in the Course of the Incipient Stage of Flame Propagation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    12. Liu, Fa-Ping & Li, Ai-Rong & Wang, Jie & Luo, Ze-Dong, 2021. "Iron-based ionic liquid ([BMIM][FeCl4]) as a promoter of CO2 hydrate nucleation and growth," Energy, Elsevier, vol. 214(C).
    13. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    14. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
    15. Luiz F. Rodrigues & Alessandro Ramos & Gabriel de Araujo & Edson Silveira & Marcelo Ketzer & Rogerio Lourega, 2019. "High-Pressure and Automatized System for Study of Natural Gas Hydrates," Energies, MDPI, vol. 12(16), pages 1-14, August.
    16. Stephan Karmann & Stefan Eicheldinger & Maximilian Prager & Malte Jaensch & Georg Wachtmeister, 2023. "Optical and Thermodynamic Investigations of a Methane- and Hydrogen-Blend-Fueled Large-Bore Engine Using a Fisheye Optical System," Energies, MDPI, vol. 16(4), pages 1-26, February.
    17. Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
    18. Judit Farrando-Perez & Rafael Balderas-Xicohtencatl & Yongqiang Cheng & Luke Daemen & Carlos Cuadrado-Collados & Manuel Martinez-Escandell & Anibal J. Ramirez-Cuesta & Joaquin Silvestre-Albero, 2022. "Rapid and efficient hydrogen clathrate hydrate formation in confined nanospace," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    20. Tinku Saikia & Shirish Patil & Abdullah Sultan, 2023. "Hydrogen Hydrate Promoters for Gas Storage—A Review," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.