IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224004031.html
   My bibliography  Save this article

Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix

Author

Listed:
  • Kang, Dong Woo
  • Lee, Wonhyeong
  • Ahn, Yun-Ho
  • Kim, Kwangbum
  • Lee, Jae W.

Abstract

Natural gas (NG) is an effective and eco-friendly fossil fuel with regard to reducing CO2 emission. In this manner, many technologies have been developed to store the NG efficiently, like LNG and CNG. Among them, natural gas hydrates (NGH) emerge as a promising option to replace LNG and CNG, due to their high energy density and mild storage conditions. Nevertheless, vigorous mechanical stirring, which is typically adopted to produce the NGH, requires high energy inputs and short periodic managements from elevated viscosity of the fluids during the production process. In this work, the effective method for synthesizing methane hydrates under a non-stirred system was proposed and evaluated. A commercial melamine sponge, which is cheap, lightweight, and easily accessible, was utilized as a supporting matrix. Additionally, various types of thermodynamic (e.g., CP (immiscible) and THF (miscible) and kinetic promoters (e.g., sodium dodecyl sulfate (SDS, surfactant) and l-methionine (L-met, amino acid)) were introduced and assessed in terms of methane storage capacity and kinetic parameters during the long-term 20 cycles of formation-dissociation. These combinations from low dosage of thermodynamic and kinetic promoters (e.g., CP + SDS, and DIOX + L-met) facilitated immediate nucleation, and high methane uptake was obtained by inducing sequential growth of methane hydrates. Finally, comparing with the CNG technology, it was shown that the mixed hydrates formed with the low-dosage of promoters were profitable in terms of formation and storage conditions.

Suggested Citation

  • Kang, Dong Woo & Lee, Wonhyeong & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224004031
    DOI: 10.1016/j.energy.2024.130631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224004031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.