IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1027-d142826.html
   My bibliography  Save this article

Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage

Author

Listed:
  • Sebastiano Garroni

    (International Research Centre in Critical Raw Materials—ICCRAM, Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain)

  • Antonio Santoru

    (Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Hujun Cao

    (Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Martin Dornheim

    (Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

  • Thomas Klassen

    (Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
    Department of Mechanical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany)

  • Chiara Milanese

    (Pavia Hydrogen Lab, C.S.G.I. & Department of Chemistry, Physical-Chemistry Section, University of Pavia, Viale Taramelli, 16, 27100 Pavia, Italy)

  • Fabiana Gennari

    (Centro Atómico Bariloche (CNEA) e Instituto Balseiro (UNCuyo), Bariloche, Río Negro R8402AGP, Argentina)

  • Claudio Pistidda

    (Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany)

Abstract

Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM) fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen, further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and U.S. Department of Energy (DOE). Recent projections indicate that a system possessing: (i) an ideal enthalpy in the range of 20–50 kJ/mol H 2 , to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii) a gravimetric hydrogen density of 5 wt. % H 2 and (iii) fast sorption kinetics below 110 °C is strongly recommended. Among the known hydrogen storage materials, amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however, some barriers still have to be overcome before considering this class of material mature for real applications. In this review, the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties, experimentally measured for the most promising systems, are reported and properly discussed.

Suggested Citation

  • Sebastiano Garroni & Antonio Santoru & Hujun Cao & Martin Dornheim & Thomas Klassen & Chiara Milanese & Fabiana Gennari & Claudio Pistidda, 2018. "Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage," Energies, MDPI, vol. 11(5), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1027-:d:142826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1027/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1027/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul J. J. Welfens & Christian Richter & Holger C. Wolf, 2019. "Transitions," International Economics and Economic Policy, Springer, vol. 16(4), pages 563-564, October.
    2. Ping Chen & Zhitao Xiong & Jizhong Luo & Jianyi Lin & Kuang Lee Tan, 2002. "Interaction of hydrogen with metal nitrides and imides," Nature, Nature, vol. 420(6913), pages 302-304, November.
    3. Donald L. Anton & Christine J. Price & Joshua Gray, 2011. "Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH 2 /MgH 2 Mixture," Energies, MDPI, vol. 4(5), pages 1-19, May.
    4. Han Wang & Hujun Cao & Guotao Wu & Teng He & Ping Chen, 2015. "The improved Hydrogen Storage Performances of the Multi-Component Composite: 2Mg(NH 2 ) 2 –3LiH–LiBH 4," Energies, MDPI, vol. 8(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökhan Gizer & Hujun Cao & Julián Puszkiel & Claudio Pistidda & Antonio Santoru & Weijin Zhang & Teng He & Ping Chen & Thomas Klassen & Martin Dornheim, 2019. "Enhancement Effect of Bimetallic Amide K 2 Mn(NH 2 ) 4 and In-Situ Formed KH and Mn 4 N on the Dehydrogenation/Hydrogenation Properties of Li–Mg–N–H System," Energies, MDPI, vol. 12(14), pages 1-12, July.
    2. Julián Puszkiel & José M. Bellosta von Colbe & Julian Jepsen & Sergey V. Mitrokhin & Elshad Movlaev & Victor Verbetsky & Thomas Klassen, 2020. "Designing an AB 2 -Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept," Energies, MDPI, vol. 13(11), pages 1-26, June.
    3. Erika Michela Dematteis & Jussara Barale & Marta Corno & Alessandro Sciullo & Marcello Baricco & Paola Rizzi, 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective," Energies, MDPI, vol. 14(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gökhan Gizer & Hujun Cao & Julián Puszkiel & Claudio Pistidda & Antonio Santoru & Weijin Zhang & Teng He & Ping Chen & Thomas Klassen & Martin Dornheim, 2019. "Enhancement Effect of Bimetallic Amide K 2 Mn(NH 2 ) 4 and In-Situ Formed KH and Mn 4 N on the Dehydrogenation/Hydrogenation Properties of Li–Mg–N–H System," Energies, MDPI, vol. 12(14), pages 1-12, July.
    2. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    3. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    4. Craig M. Jensen & Etsuo Akiba & Hai-Wen Li, 2016. "Hydrides: Fundamentals and Applications," Energies, MDPI, vol. 9(4), pages 1-2, April.
    5. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
    7. Thi-Thu Le & Claudio Pistidda & Julián Puszkiel & María Victoria Castro Riglos & David Michael Dreistadt & Thomas Klassen & Martin Dornheim, 2021. "Enhanced Hydrogen Storage Properties of Li-RHC System with In-House Synthesized AlTi 3 Nanoparticles," Energies, MDPI, vol. 14(23), pages 1-16, November.
    8. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    9. Donald L. Anton & Christine J. Price & Joshua Gray, 2011. "Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH 2 /MgH 2 Mixture," Energies, MDPI, vol. 4(5), pages 1-19, May.
    10. Liu, Yongfeng & Zhang, Wenxuan & Zhang, Xin & Yang, Limei & Huang, Zhenguo & Fang, Fang & Sun, Wenping & Gao, Mingxia & Pan, Hongge, 2023. "Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Han Wang & Hujun Cao & Guotao Wu & Teng He & Ping Chen, 2015. "The improved Hydrogen Storage Performances of the Multi-Component Composite: 2Mg(NH 2 ) 2 –3LiH–LiBH 4," Energies, MDPI, vol. 8(7), pages 1-12, July.
    12. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    13. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    14. Tunç, Nihat & Rakap, Murat, 2020. "Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis," Renewable Energy, Elsevier, vol. 155(C), pages 1222-1230.
    15. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1027-:d:142826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.