IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003272.html
   My bibliography  Save this article

Revolutionizing hydrogen production and storage: Harnessing the power of MXenes for a greener and sustainable future

Author

Listed:
  • Rasheed, Tahir
  • Ahmad, Rabia
  • Arishi, Ali

Abstract

Among many types of electrocatalyst materials for the hydrogen evolution reaction (HER), two-dimensional (2D) transition metal nitrides and carbides (MXenes) stand out for their distinctive characteristics. The presence of transition metals (TMs) in their structure and terminations imparts metallic conductivity, allowing for variable surface chemistry. Although early research on pure MXenes showed modest HER overpotentials, the kinetics of the hydrogen (H2) adsorption and desorption processes still restrict their electrocatalytic effectiveness. To improve the HER kinetics of MXenes, doping has recently been investigated as a viable method for optimizing their surface and electrical characteristics. This research aims to investigate the impact of doping in MXenes by substituting functional groups, including various elements/species into the MXene matrix, and altering the interface to enhance environmentally friendly production of hydrogen. Additionally, several hydrogen storage techniques have been examined. Currently, hydrogen is employed either as a compressed gas contained in high-pressure tanks or as a liquid held in tanks. Nonetheless, the safety issues linked to traditional storage methods render the solid-state storage method an attractive option. This architecture enables reversible hydrogen storage through the potential of lightweight, high-performance solid-state materials like MXenes. Despite their considerable promise, the utilization of MXenes in hydrogen storage has not been thoroughly explored. This study provides a thorough overview of the existing applications of MXenes and MXene-based materials for hydrogen generation and storage, addressing the challenges they encounter and their possible potential prospects.

Suggested Citation

  • Rasheed, Tahir & Ahmad, Rabia & Arishi, Ali, 2025. "Revolutionizing hydrogen production and storage: Harnessing the power of MXenes for a greener and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003272
    DOI: 10.1016/j.rser.2025.115654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.