IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59895-9.html
   My bibliography  Save this article

Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries

Author

Listed:
  • Yiwei You

    (Xiamen University)

  • Dexin Zhang

    (Xiamen University)

  • Zhifeng Wu

    (Xiamen University)

  • Tie-Yu Lü

    (Xiamen University)

  • Xinrui Cao

    (Xiamen University)

  • Yang Sun

    (Xiamen University)

  • Zi-Zhong Zhu

    (Xiamen University)

  • Shunqing Wu

    (Xiamen University)

Abstract

Solid-state lithium metal batteries using garnet-type Li7La3Zr2O12 electrolytes hold immense promise for next-generation energy storage, but grain boundary defects promote lithium redistribution and dendrite formation, compromising performance and safety. To address this, we investigate lithium behavior at these boundaries using machine learning potentials and molecular dynamics simulations. Energy minimization drives lithium accumulation or depletion at grain boundaries depending on cavity fraction and local lithium concentration. Crack-like boundary voids facilitate lithium protrusions and dendrites at the electrolyte/negative electrode interface, increasing short-circuit risks. Controlled grain boundary melting achieves selective amorphization while preserving bulk crystallinity. This structural modification slightly reduces ionic conductivity but enhances interfacial electronic and mechanical properties, suppressing lithium aggregation and alleviating interfacial protrusions. In this work, we demonstrate how grain boundary structures govern lithium redistribution dynamics and dendrite formation mechanisms. We further propose targeted grain boundary amorphization as an effective strategy to engineer robust solid-state electrolyte microstructures that improve battery cyclability and safety.

Suggested Citation

  • Yiwei You & Dexin Zhang & Zhifeng Wu & Tie-Yu Lü & Xinrui Cao & Yang Sun & Zi-Zhong Zhu & Shunqing Wu, 2025. "Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59895-9
    DOI: 10.1038/s41467-025-59895-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59895-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59895-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenqi Gu & Jiale Ma & Feng Zhu & Ting Liu & Kai Wang & Ce-Wen Nan & Zhenyu Li & Cheng Ma, 2023. "Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    3. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    4. Hanyu Huo & Jian Gao & Ning Zhao & Dongxing Zhang & Nathaniel Graham Holmes & Xiaona Li & Yipeng Sun & Jiamin Fu & Ruying Li & Xiangxin Guo & Xueliang Sun, 2021. "A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Fudong Han & Andrew S. Westover & Jie Yue & Xiulin Fan & Fei Wang & Miaofang Chi & Donovan N. Leonard & Nancy J. Dudney & Howard Wang & Chunsheng Wang, 2019. "High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes," Nature Energy, Nature, vol. 4(3), pages 187-196, March.
    6. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Ju Lee & Yuju Jeon & Jung-Pil Lee & Lanshuang Zhang & Ki Hwan Koh & Feng Li & Anthony U. Mu & Junlin Wu & Yu-Ting Chen & Seamus McNulty & Wei Tang & Marta Vicencio & Dapeng Xu & Jiyoung Kim & Zhe, 2025. "Robust interface and reduced operation pressure enabled by co-rolling dry-process for stable all-solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    3. Mengchen Liu & Jessica J. Hong & Elias Sebti & Ke Zhou & Shen Wang & Shijie Feng & Tyler Pennebaker & Zeyu Hui & Qiushi Miao & Ershuang Lu & Nimrod Harpak & Sicen Yu & Jianbin Zhou & Jeong Woo Oh & Mi, 2025. "Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Bowen Zhang & Botao Yuan & Xin Yan & Xiao Han & Jiawei Zhang & Huifeng Tan & Changuo Wang & Pengfei Yan & Huajian Gao & Yuanpeng Liu, 2025. "Atomic mechanism of lithium dendrite penetration in solid electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Zhou, Lan & Zong, Yun & Liu, Zhaolin & Yu, Aishui, 2016. "A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy LiS batteries," Renewable Energy, Elsevier, vol. 96(PA), pages 333-340.
    6. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zubi, Ghassan & Dufo-López, Rodolfo & Pasaoglu, Guzay & Pardo, Nicolás, 2016. "Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario," Applied Energy, Elsevier, vol. 176(C), pages 309-319.
    8. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    9. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    10. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    11. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    12. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    13. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    14. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    15. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    16. Zhao, Bin, 2017. "Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?," Energy Policy, Elsevier, vol. 108(C), pages 712-714.
    17. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59895-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.