Author
Listed:
- Dong Ju Lee
(San Diego)
- Yuju Jeon
(San Diego)
- Jung-Pil Lee
(Ltd. LG Science Park)
- Lanshuang Zhang
(University of California, San Diego)
- Ki Hwan Koh
(San Diego)
- Feng Li
(San Diego)
- Anthony U. Mu
(San Diego)
- Junlin Wu
(University of California, San Diego)
- Yu-Ting Chen
(University of California, San Diego)
- Seamus McNulty
(San Diego)
- Wei Tang
(San Diego)
- Marta Vicencio
(San Diego)
- Dapeng Xu
(San Diego)
- Jiyoung Kim
(Ltd. LG Science Park)
- Zheng Chen
(San Diego
University of California, San Diego
University of California, San Diego)
Abstract
The dry-process is a sustainable and promising fabrication method for all-solid-state batteries by eliminating solvents. However, a pragmatic fabrication design for thin and robust solid-state electrolyte (SSE) layers has not been established. Herein, we report a dry-process approach that enhances mechanical stability of SSE layers from film fabrication to cell operation. By co-rolling thick SSE and positive electrode feeds, a uniform, thin SSE layer (50 µm) and a high loading positive electrode layer (5 mAh cm−2) with high active material ratio (80 wt%) are simultaneously achieved. This SSE-positive electrode integrated film exhibits enhanced physical properties and cyclability (> 80% retention after 500 cycles) at low stack pressure (2 MPa) compared to the freestanding counterparts, attributed to reinforced and intimate SSE-positive electrode interface constructed during co-rolling process. Additionally, an all-solid-state pouch cell with high stack-level specific energy (310 Wh kg−1) and energy density (805 Wh L−1) operating at 30 °C and 5 MPa is demonstrated.
Suggested Citation
Dong Ju Lee & Yuju Jeon & Jung-Pil Lee & Lanshuang Zhang & Ki Hwan Koh & Feng Li & Anthony U. Mu & Junlin Wu & Yu-Ting Chen & Seamus McNulty & Wei Tang & Marta Vicencio & Dapeng Xu & Jiyoung Kim & Zhe, 2025.
"Robust interface and reduced operation pressure enabled by co-rolling dry-process for stable all-solid-state batteries,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59363-4
DOI: 10.1038/s41467-025-59363-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59363-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.