Author
Listed:
- Fudong Han
(University of Maryland)
- Andrew S. Westover
(Oak Ridge National Laboratory)
- Jie Yue
(University of Maryland)
- Xiulin Fan
(University of Maryland)
- Fei Wang
(University of Maryland)
- Miaofang Chi
(Oak Ridge National Laboratory)
- Donovan N. Leonard
(Oak Ridge National Laboratory)
- Nancy J. Dudney
(Oak Ridge National Laboratory)
- Howard Wang
(University of Maryland)
- Chunsheng Wang
(University of Maryland)
Abstract
Solid electrolytes (SEs) are widely considered as an ‘enabler’ of lithium anodes for high-energy batteries. However, recent reports demonstrate that the Li dendrite formation in Li7La3Zr2O12 (LLZO) and Li2S–P2S5 is actually much easier than that in liquid electrolytes of lithium batteries, by mechanisms that remain elusive. Here we illustrate the origin of the dendrite formation by monitoring the dynamic evolution of Li concentration profiles in three popular but representative SEs (LiPON, LLZO and amorphous Li3PS4) during lithium plating using time-resolved operando neutron depth profiling. Although no apparent changes in the lithium concentration in LiPON can be observed, we visualize the direct deposition of Li inside the bulk LLZO and Li3PS4. Our findings suggest the high electronic conductivity of LLZO and Li3PS4 is mostly responsible for dendrite formation in these SEs. Lowering the electronic conductivity, rather than further increasing the ionic conductivity of SEs, is therefore critical for the success of all-solid-state Li batteries.
Suggested Citation
Fudong Han & Andrew S. Westover & Jie Yue & Xiulin Fan & Fei Wang & Miaofang Chi & Donovan N. Leonard & Nancy J. Dudney & Howard Wang & Chunsheng Wang, 2019.
"High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes,"
Nature Energy, Nature, vol. 4(3), pages 187-196, March.
Handle:
RePEc:nat:natene:v:4:y:2019:i:3:d:10.1038_s41560-018-0312-z
DOI: 10.1038/s41560-018-0312-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:3:d:10.1038_s41560-018-0312-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.