IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58522-x.html
   My bibliography  Save this article

Harnessing database-supported high-throughput screening for the design of stable interlayers in halide-based all-solid-state batteries

Author

Listed:
  • Longyun Shen

    (Clear Water Bay)

  • Zilong Wang

    (Clear Water Bay)

  • Shengjun Xu

    (University of Bayreuth
    Universitätsstraße 30)

  • Ho Mei Law

    (University of Bayreuth
    Universitätsstraße 30)

  • Yanguang Zhou

    (Clear Water Bay)

  • Francesco Ciucci

    (Clear Water Bay
    University of Bayreuth
    Universitätsstraße 30)

Abstract

All-solid-state Li metal batteries (ASSLMBs) promise superior safety and energy density compared to conventional Li-ion batteries. However, their widespread adoption is hindered by detrimental interfacial reactions between solid-state electrolytes (SSEs) and the Li negative electrode, compromising long-term cycling stability. The challenges in directly observing these interfaces impede a comprehensive understanding of reaction mechanisms, necessitating first-principle simulations for designing novel interlayer materials. To overcome these limitations, we develop a database-supported high-throughput screening (DSHTS) framework for identifying stable interlayer materials compatible with both Li and SSEs. Using Li3InCl6 as a model SSE, we identify Li3OCl as a potential interlayer material. Experimental validation demonstrates significantly improved electrochemical performance in both symmetric- and full-cell configurations. A Li|Li3OCl|Li3InCl6|LiCoO2 cell exhibits an initial discharge capacity of 154.4 mAh/g (1.09 mA/cm2, 2.5–4.2 V vs. Li/Li+, 303 K) with 76.36% capacity retention after 1000 cycles. Notably, a cell with a conventional In-Li6PS5Cl interlayer delivers only 132.4 mAh/g and fails after 760 cycles. An additional interlayer-containing battery with Li(Ni0.8Co0.1Mn0.1)O2 as the positive electrode achieves an initial discharge capacity of 151.3 mAh/g (3.84 mA/cm2, 2.5–4.2 V vs. Li/Li+, 303 K), maintaining stable operation over 1650 cycles. The results demonstrate the promise of the DSHTS framework for identifying interlayer materials.

Suggested Citation

  • Longyun Shen & Zilong Wang & Shengjun Xu & Ho Mei Law & Yanguang Zhou & Francesco Ciucci, 2025. "Harnessing database-supported high-throughput screening for the design of stable interlayers in halide-based all-solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58522-x
    DOI: 10.1038/s41467-025-58522-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58522-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58522-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Shumin Zhang & Feipeng Zhao & Jiatang Chen & Jiamin Fu & Jing Luo & Sandamini H. Alahakoon & Lo-Yueh Chang & Renfei Feng & Mohsen Shakouri & Jianwen Liang & Yang Zhao & Xiaona Li & Le He & Yining Huan, 2023. "A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Zeyi Wang & Jiale Xia & Xiao Ji & Yijie Liu & Jiaxun Zhang & Xinzi He & Weiran Zhang & Hongli Wan & Chunsheng Wang, 2024. "Lithium anode interlayer design for all-solid-state lithium-metal batteries," Nature Energy, Nature, vol. 9(3), pages 251-262, March.
    4. Tao Dai & Siyuan Wu & Yaxiang Lu & Yang Yang & Yuan Liu & Chao Chang & Xiaohui Rong & Ruijuan Xiao & Junmei Zhao & Yanhui Liu & Weihua Wang & Liquan Chen & Yong-Sheng Hu, 2023. "Inorganic glass electrolytes with polymer-like viscoelasticity," Nature Energy, Nature, vol. 8(11), pages 1221-1228, November.
    5. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Muratahan Aykol & Soo Kim & Vinay I. Hegde & David Snydacker & Zhi Lu & Shiqiang Hao & Scott Kirklin & Dane Morgan & C. Wolverton, 2016. "High-throughput computational design of cathode coatings for Li-ion batteries," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    7. Hongli Wan & Zeyi Wang & Weiran Zhang & Xinzi He & Chunsheng Wang, 2023. "Interface design for all-solid-state lithium batteries," Nature, Nature, vol. 623(7988), pages 739-744, November.
    8. Yi-Chen Yin & Jing-Tian Yang & Jin-Da Luo & Gong-Xun Lu & Zhongyuan Huang & Jian-Ping Wang & Pai Li & Feng Li & Ye-Chao Wu & Te Tian & Yu-Feng Meng & Hong-Sheng Mo & Yong-Hui Song & Jun-Nan Yang & Li-, 2023. "A LaCl3-based lithium superionic conductor compatible with lithium metal," Nature, Nature, vol. 616(7955), pages 77-83, April.
    9. Kai Wang & Qingyong Ren & Zhenqi Gu & Chaomin Duan & Jinzhu Wang & Feng Zhu & Yuanyuan Fu & Jipeng Hao & Jinfeng Zhu & Lunhua He & Chin-Wei Wang & Yingying Lu & Jie Ma & Cheng Ma, 2021. "A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Weiran Zhang & Volodymyr Koverga & Sufu Liu & Jigang Zhou & Jian Wang & Panxing Bai & Sha Tan & Naveen K. Dandu & Zeyi Wang & Fu Chen & Jiale Xia & Hongli Wan & Xiyue Zhang & Haochen Yang & Brett L. L, 2024. "Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries," Nature Energy, Nature, vol. 9(4), pages 386-400, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Wu & Xinyu Liu & Hong Liu & Dabing Li & Xiang Qi & Jianrong Zeng & Lei Gao & Ce-Wen Nan & Li-Zhen Fan, 2025. "Fluorinated amorphous halides with improved ionic conduction and stability for all-solid-state sodium-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Dong Ju Lee & Yuju Jeon & Jung-Pil Lee & Lanshuang Zhang & Ki Hwan Koh & Feng Li & Anthony U. Mu & Junlin Wu & Yu-Ting Chen & Seamus McNulty & Wei Tang & Marta Vicencio & Dapeng Xu & Jiyoung Kim & Zhe, 2025. "Robust interface and reduced operation pressure enabled by co-rolling dry-process for stable all-solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Murukadas, Deepu & Cho, Yeonhwa & Lee, Woongki & Lee, Sooyong & Kim, Hwajeong & Kim, Youngkyoo, 2024. "Lithium supercapacitors with environmentally-friend water-processable solid-state hybrid electrolytes of zinc oxide/polymer/lithium hydroxide," Energy, Elsevier, vol. 290(C).
    8. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Peiying Li & Jinjin Hao & Shuang He & Zenghua Chang & Xiaolei Li & Rennian Wang & Wen Ma & Jiantao Wang & Yuhao Lu & Hong Li & Liqun Zhang & Weidong Zhou, 2025. "Li+-migration influencing factors and non-destructive life extension of quasi-solid-state polymer electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Zhoujie Lao & Kehao Tao & Xiao Xiao & Haotian Qu & Xinru Wu & Zhiyuan Han & Runhua Gao & Jian Wang & Xian Wu & An Chen & Lei Shi & Chengshuai Chang & Yanze Song & Xiangyu Wang & Jinjin Li & Yanfei Zhu, 2025. "Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Xiang Xu & Yunxin Chen & Pengbin Liu & Hao Luo & Zexin Li & Dongyan Li & Haoyun Wang & Xingyu Song & Jinsong Wu & Xing Zhou & Tianyou Zhai, 2024. "General synthesis of ionic-electronic coupled two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Hanwen An & Menglu Li & Qingsong Liu & Yajie Song & Jiaxuan Liu & Zhihang Yu & Xingjiang Liu & Biao Deng & Jiajun Wang, 2024. "Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg−1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Xiaona Li & Jung Tae Kim & Jing Luo & Changtai Zhao & Yang Xu & Tao Mei & Ruying Li & Jianwen Liang & Xueliang Sun, 2024. "Structural regulation of halide superionic conductors for all-solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Yubin He & Chunyang Wang & Rui Zhang & Peichao Zou & Zhouyi Chen & Seong-Min Bak & Stephen E. Trask & Yonghua Du & Ruoqian Lin & Enyuan Hu & Huolin L. Xin, 2024. "A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Sunyoung Lee & Hayoung Park & Jae Young Kim & Jihoon Kim & Min-Ju Choi & Sangwook Han & Sewon Kim & Wonju Kim & Ho Won Jang & Jungwon Park & Kisuk Kang, 2024. "Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Likun Chen & Tian Gu & Jinshuo Mi & Yuhang Li & Ke Yang & Jiabin Ma & Xufei An & Yuyuan Jiang & Danfeng Zhang & Xing Cheng & Shaoke Guo & Zhuo Han & Tingzheng Hou & Yidan Cao & Ming Liu & Wei Lv & Yan, 2025. "Homogeneous polymer-ionic solvate electrolyte with weak dipole-dipole interaction enabling long cycling pouch lithium metal battery," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58522-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.