Author
Listed:
- Peiying Li
(Beijing University of Chemical Technology)
- Jinjin Hao
(Beijing University of Chemical Technology)
- Shuang He
(Beijing University of Chemical Technology)
- Zenghua Chang
(China Automotive Battery Research Institute Co. Ltd. Beijing)
- Xiaolei Li
(Beijing University of Chemical Technology)
- Rennian Wang
(China Automotive Battery Research Institute Co. Ltd. Beijing)
- Wen Ma
(Key Laboratory of Consumer Lithium-Ion Battery in Fujian)
- Jiantao Wang
(China Automotive Battery Research Institute Co. Ltd. Beijing)
- Yuhao Lu
(Key Laboratory of Consumer Lithium-Ion Battery in Fujian)
- Hong Li
(Chinese Academy of Sciences)
- Liqun Zhang
(Beijing University of Chemical Technology)
- Weidong Zhou
(Beijing University of Chemical Technology)
Abstract
Polymer-based quasi-solid-state electrolytes (QSSE) are believed to be the most feasible candidates for solid-state batteries, but they are hindered by relatively lower ionic conductivity and narrower electrochemical window. Here, we synthesize a series of ether-free acrylates containing Li+-ligands for high-voltage-stable QSSEs. Our findings demonstrate that the polymer-involved solvation structure is critical in determining the ionic conductivity, and low-temperature crystallization of the polymer can be used for non-destructive life extension of batteries. The prepared polymers do not contain ether unit and exhibit a polymerization degree of 99% in cells without residual double-bonded monomer, endowing them with high antioxidation capability and compatibility with high-voltage positive electrodes including LiNi0.85Co0.075Mn0.075O2, 4.6 V LiCoO2 and 4.8 V Li1.13Ni0.3Mn0.57O2. The confinement of liquid in QSSEs effectively suppresses the interfacial reactions, but the residual interface reactions still gradually consume liquid electrolytes and cause capacity fading, due to the limited diffusion of the confined solvent to wet the interface. Through crystallizing the polymer matrices at −50 °C, the confined liquid in QSSEs is released and re-wets the Li-metal/polymer interface, thereby recovering the capacity and extending the life of solid-state batteries in a non-destructive manner.
Suggested Citation
Peiying Li & Jinjin Hao & Shuang He & Zenghua Chang & Xiaolei Li & Rennian Wang & Wen Ma & Jiantao Wang & Yuhao Lu & Hong Li & Liqun Zhang & Weidong Zhou, 2025.
"Li+-migration influencing factors and non-destructive life extension of quasi-solid-state polymer electrolytes,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59020-w
DOI: 10.1038/s41467-025-59020-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59020-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.