IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58113-w.html
   My bibliography  Save this article

Fluorinated amorphous halides with improved ionic conduction and stability for all-solid-state sodium-ion batteries

Author

Listed:
  • Meng Wu

    (University of Science and Technology Beijing)

  • Xinyu Liu

    (University of Science and Technology Beijing)

  • Hong Liu

    (Tsinghua University)

  • Dabing Li

    (University of Science and Technology Beijing)

  • Xiang Qi

    (University of Science and Technology Beijing)

  • Jianrong Zeng

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Lei Gao

    (University of Science and Technology Beijing)

  • Ce-Wen Nan

    (Tsinghua University)

  • Li-Zhen Fan

    (University of Science and Technology Beijing)

Abstract

Designing halide solid electrolytes with high ionic conductivity and good (electro)chemical stability is essential for the advancement of all-solid-state sodium-ion batteries. Unfortunately, most sodium-based halide solid electrolytes experience limited ionic conductivities and ambiguous correlations between their structure features and ion transport properties. Here we report a design strategy to boost the conductivities of sodium halides by regulating vacancy and charge carrier concentrations through a facile Na- and Cl-deficient compositions method. This approach achieves a balanced structure with optimal vacancy and carrier content, rendering several-fold conductivities enhancement of series sodium halides. Furthermore, a fluorination-induced amorphization protocol is employed to enhance (electro)chemical stability and interfacial compatibility without detrimentally influencing conductivities. The promoted conductivities of the fluorinated sample are primarily due to increased local structural disorder and enhanced prismatic Na coordination. When paired with an uncoated Na3V2(PO4)3 positive electrode and a Na3PS4-coated Na15Sn4 negative electrode, the Na0.5ZrCl4F0.5 catholyte enables the battery to run for 300 cycles, retaining 94.4% of its initial discharge capacity at room temperature. This study provides a versatile pathway for creating inorganic ion conductors with high conductivity and long-term cyclability, advancing the development of all-solid-state sodium-ion batteries.

Suggested Citation

  • Meng Wu & Xinyu Liu & Hong Liu & Dabing Li & Xiang Qi & Jianrong Zeng & Lei Gao & Ce-Wen Nan & Li-Zhen Fan, 2025. "Fluorinated amorphous halides with improved ionic conduction and stability for all-solid-state sodium-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58113-w
    DOI: 10.1038/s41467-025-58113-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58113-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58113-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik A. Wu & Swastika Banerjee & Hanmei Tang & Peter M. Richardson & Jean-Marie Doux & Ji Qi & Zhuoying Zhu & Antonin Grenier & Yixuan Li & Enyue Zhao & Grayson Deysher & Elias Sebti & Han Nguyen & Ry, 2021. "A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Akitoshi Hayashi & Kousuke Noi & Atsushi Sakuda & Masahiro Tatsumisago, 2012. "Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries," Nature Communications, Nature, vol. 3(1), pages 1-5, January.
    3. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Shumin Zhang & Feipeng Zhao & Jiatang Chen & Jiamin Fu & Jing Luo & Sandamini H. Alahakoon & Lo-Yueh Chang & Renfei Feng & Mohsen Shakouri & Jianwen Liang & Yang Zhao & Xiaona Li & Le He & Yining Huan, 2023. "A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. A. Hayashi & N. Masuzawa & S. Yubuchi & F. Tsuji & C. Hotehama & A. Sakuda & M. Tatsumisago, 2019. "A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    7. Tao Dai & Siyuan Wu & Yaxiang Lu & Yang Yang & Yuan Liu & Chao Chang & Xiaohui Rong & Ruijuan Xiao & Junmei Zhao & Yanhui Liu & Weihua Wang & Liquan Chen & Yong-Sheng Hu, 2023. "Inorganic glass electrolytes with polymer-like viscoelasticity," Nature Energy, Nature, vol. 8(11), pages 1221-1228, November.
    8. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Xingfeng He & Yizhou Zhu & Yifei Mo, 2017. "Origin of fast ion diffusion in super-ionic conductors," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    10. Kai Wang & Qingyong Ren & Zhenqi Gu & Chaomin Duan & Jinzhu Wang & Feng Zhu & Yuanyuan Fu & Jipeng Hao & Jinfeng Zhu & Lunhua He & Chin-Wei Wang & Yingying Lu & Jie Ma & Cheng Ma, 2021. "A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    12. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Longyun Shen & Zilong Wang & Shengjun Xu & Ho Mei Law & Yanguang Zhou & Francesco Ciucci, 2025. "Harnessing database-supported high-throughput screening for the design of stable interlayers in halide-based all-solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Zhimin Chen & Tao Du & N. M. Anoop Krishnan & Yuanzheng Yue & Morten M. Smedskjaer, 2025. "Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Murukadas, Deepu & Cho, Yeonhwa & Lee, Woongki & Lee, Sooyong & Kim, Hwajeong & Kim, Youngkyoo, 2024. "Lithium supercapacitors with environmentally-friend water-processable solid-state hybrid electrolytes of zinc oxide/polymer/lithium hydroxide," Energy, Elsevier, vol. 290(C).
    11. Kit Barker & Sarah L. McKinney & Raül Artal & Ricardo Jiménez & Nuria Tapia-Ruiz & Stephen J. Skinner & Ainara Aguadero & Ieuan D. Seymour, 2024. "The importance of A-site cation chemistry in superionic halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Aziam, Hasna & Larhrib, Badre & Hakim, Charifa & Sabi, Noha & Ben Youcef, Hicham & Saadoune, Ismael, 2022. "Solid-state electrolytes for beyond lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Ge Sun & Chenjie Lou & Boqian Yi & Wanqing Jia & Zhixuan Wei & Shiyu Yao & Ziheng Lu & Gang Chen & Zexiang Shen & Mingxue Tang & Fei Du, 2023. "Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Kai Wang & Zhenqi Gu & Zhiwei Xi & Lv Hu & Cheng Ma, 2023. "Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Matthew Burton & Sudarshan Narayanan & Ben Jagger & Lorenz F. Olbrich & Shobhan Dhir & Masafumi Shibata & Michael J. Lain & Robert Astbury & Nicholas Butcher & Mark Copley & Toshikazu Kotaka & Yuichi , 2025. "Techno-economic assessment of thin lithium metal anodes for solid-state batteries," Nature Energy, Nature, vol. 10(1), pages 135-147, January.
    17. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Burke, Andrew F. & Zhao, Jingyuan, 2025. "Advanced Battery Technologies: Bus, Heavy-Duty Vocational Truck, and Construction Machinery Applications," Institute of Transportation Studies, Working Paper Series qt5zx1k22k, Institute of Transportation Studies, UC Davis.
    20. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58113-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.