IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1843.html
   My bibliography  Save this article

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries

Author

Listed:
  • Akitoshi Hayashi

    (Faculty of Engineering, Osaka Prefecture University)

  • Kousuke Noi

    (Faculty of Engineering, Osaka Prefecture University)

  • Atsushi Sakuda

    (Faculty of Engineering, Osaka Prefecture University)

  • Masahiro Tatsumisago

    (Faculty of Engineering, Osaka Prefecture University)

Abstract

Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na+ ion conductivity. An ambient temperature conductivity of over 10−4 S cm−1 was obtained in a glass-ceramic electrolyte, in which a cubic Na3PS4 crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na3PS4 electrolyte, functioned as a rechargeable battery at room temperature.

Suggested Citation

  • Akitoshi Hayashi & Kousuke Noi & Atsushi Sakuda & Masahiro Tatsumisago, 2012. "Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries," Nature Communications, Nature, vol. 3(1), pages 1-5, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1843
    DOI: 10.1038/ncomms1843
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1843
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Aziam, Hasna & Larhrib, Badre & Hakim, Charifa & Sabi, Noha & Ben Youcef, Hicham & Saadoune, Ismael, 2022. "Solid-state electrolytes for beyond lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.