IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6441-d1234029.html
   My bibliography  Save this article

Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products

Author

Listed:
  • Mateusz Wnukowski

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland)

Abstract

With the increasing role of hydrogen in the global market, new ways of hydrogen production are being sought and investigated. One of the possible solutions might be the plasma pyrolysis of methane. This approach provides not only the desired hydrogen, but also valuable carbon-containing products, e.g., carbon black of C 2 compounds. This review gathers information from the last 20 years on different reactors that were investigated in the context of methane pyrolysis, emphasizing the different products that can be obtained through this process.

Suggested Citation

  • Mateusz Wnukowski, 2023. "Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products," Energies, MDPI, vol. 16(18), pages 1-34, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6441-:d:1234029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Zbigniew Rogala & Michał Stanclik & Dariusz Łuszkiewicz & Ziemowit Malecha, 2023. "Perspectives for the Use of Biogas and Biomethane in the Context of the Green Energy Transformation on the Example of an EU Country," Energies, MDPI, vol. 16(4), pages 1-11, February.
    3. Mohammadreza Taheraslani & Han Gardeniers, 2020. "Coupling of CH 4 to C 2 Hydrocarbons in a Packed Bed DBD Plasma Reactor: The Effect of Dielectric Constant and Porosity of the Packing," Energies, MDPI, vol. 13(2), pages 1-19, January.
    4. Seunghyun Cheon & Manhee Byun & Dongjun Lim & Hyunjun Lee & Hankwon Lim, 2021. "Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis," Energies, MDPI, vol. 14(19), pages 1-19, September.
    5. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    6. Niccolò Caramanico & Giuseppe Di Florio & Maria Camilla Baratto & Viviana Cigolotti & Riccardo Basosi & Elena Busi, 2021. "Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy," Energies, MDPI, vol. 14(18), pages 1-24, September.
    7. Tamás I. Korányi & Miklós Németh & Andrea Beck & Anita Horváth, 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, MDPI, vol. 15(17), pages 1-14, August.
    8. Majidi Bidgoli, Abbas & Ghorbanzadeh, Atamalek & Lotfalipour, Raheleh & Roustaei, Ehsan & Zakavi, Marjan, 2017. "Gliding spark plasma: Physical principles and performance in direct pyrolysis of methane," Energy, Elsevier, vol. 125(C), pages 705-715.
    9. Nicolae I. Badea, 2021. "Hydrogen as Energy Sources—Basic Concepts," Energies, MDPI, vol. 14(18), pages 1-22, September.
    10. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    11. Kamil Wróbel & Justyna Wróbel & Wojciech Tokarz & Jakub Lach & Katarzyna Podsadni & Andrzej Czerwiński, 2022. "Hydrogen Internal Combustion Engine Vehicles: A Review," Energies, MDPI, vol. 15(23), pages 1-13, November.
    12. Indarto, Antonius & Choi, Jae-Wook & Lee, Hwaung & Song, Hyung Keun, 2006. "Effect of additive gases on methane conversion using gliding arc discharge," Energy, Elsevier, vol. 31(14), pages 2986-2995.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    2. Gayatri Udaysinh Ingale & Hyun-Min Kwon & Soohwa Jeong & Dongho Park & Whidong Kim & Byeingryeol Bang & Young-Il Lim & Sung Won Kim & Youn-Bae Kang & Jungsoo Mun & Sunwoo Jun & Uendo Lee, 2022. "Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming," Energies, MDPI, vol. 15(22), pages 1-20, November.
    3. Rahmati, Hamed & Ghorbanzadeh, Atamalek, 2021. "Parallel electrodes gliding plasma: Working principles and application in dry reforming of methane," Energy, Elsevier, vol. 230(C).
    4. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
    5. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    6. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    7. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
    8. Dong Kyoo Park & Ji-Hyeon Kim & Hyo-Sik Kim & Jin-Ho Kim & Jae-Hong Ryu, 2023. "Possibility Study in CO 2 Free Hydrogen Production Using Dodecane (C 12 H 26 ) from Plasma Reaction," Energies, MDPI, vol. 16(4), pages 1-13, February.
    9. Jinho Boo & Eun Hee Ko & No-Kuk Park & Changkook Ryu & Yo-Han Kim & Jinmo Park & Dohyung Kang, 2021. "Methane Pyrolysis in Molten Potassium Chloride: An Experimental and Economic Analysis," Energies, MDPI, vol. 14(23), pages 1-15, December.
    10. Rafiq, M.H. & Hustad, J.E., 2011. "Experimental and thermodynamic studies of the catalytic partial oxidation of model biogas using a plasma-assisted gliding arc reactor," Renewable Energy, Elsevier, vol. 36(11), pages 2878-2887.
    11. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Alexander Leonidovich Vasiliev & Yuriy Alekseevich Kurskii & Anna Gennadievna Ivanova & Andrey Leonidovich Golovin & Dmitry Alekseevich Shirokov & D, 2023. "Non-Thermal Plasma Pyrolysis of Fuel Oil in the Liquid Phase," Energies, MDPI, vol. 16(10), pages 1-20, May.
    12. Khaled M. A. Salim & Ruhanita Maelah & Hawa Hishamuddin & Amizawati Mohd Amir & Mohd Nizam Ab Rahman, 2022. "Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    13. Eugenio Meloni, 2022. "Electrification of Chemical Engineering: A New Way to Intensify Chemical Processes," Energies, MDPI, vol. 15(15), pages 1-3, July.
    14. Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
    15. Yishu Zhou & Joseph D. Smith & Greg Gelles, 2022. "Teaching Energy Economics in the GCC: A Synergistic Approach between Engineering and Economics," Energies, MDPI, vol. 15(19), pages 1-11, September.
    16. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Józef Ciuła & Iwona Wiewiórska & Marian Banaś & Tadeusz Pająk & Piotr Szewczyk, 2023. "Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy," Energies, MDPI, vol. 16(9), pages 1-12, May.
    18. David Neuschitzer & David Scheiblehner & Helmut Antrekowitsch & Stefan Wibner & Andreas Sprung, 2023. "Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO 2 -Free Production of Hydrogen," Energies, MDPI, vol. 16(20), pages 1-20, October.
    19. Msheik, Malek & Rodat, Sylvain & Abanades, Stéphane, 2022. "Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors," Energy, Elsevier, vol. 260(C).
    20. Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6441-:d:1234029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.