IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i14p2986-2995.html
   My bibliography  Save this article

Effect of additive gases on methane conversion using gliding arc discharge

Author

Listed:
  • Indarto, Antonius
  • Choi, Jae-Wook
  • Lee, Hwaung
  • Song, Hyung Keun

Abstract

Methane conversion using gliding arc plasma has been studied. The process was conducted at atmospheric pressure. Four kinds of additive gases—helium, argon, nitrogen, and CO2—were used to investigate their effects on methane conversion, as well as product selectivity, and discharged power. Methane conversion was increased with the increasing concentration of helium, argon, and nitrogen in the feed gas but decreased when CO2 concentration increased. Qualitatively, hydrogen and acetylene were the major gas products. No liquid product was produced.

Suggested Citation

  • Indarto, Antonius & Choi, Jae-Wook & Lee, Hwaung & Song, Hyung Keun, 2006. "Effect of additive gases on methane conversion using gliding arc discharge," Energy, Elsevier, vol. 31(14), pages 2986-2995.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2986-2995
    DOI: 10.1016/j.energy.2005.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205002379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Wnukowski, 2023. "Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products," Energies, MDPI, vol. 16(18), pages 1-34, September.
    2. Amin Zhou & Dong Chen & Bin Dai & Cunhua Ma & Panpan Li & Feng Yu, 2017. "Direct decomposition of CO 2 using self‐cooling dielectric barrier discharge plasma," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 721-730, August.
    3. Aleknaviciute, I. & Karayiannis, T.G. & Collins, M.W. & Xanthos, C., 2013. "Methane decomposition under a corona discharge to generate COx-free hydrogen," Energy, Elsevier, vol. 59(C), pages 432-439.
    4. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
    5. Liu, Heng & Yang, Shuang & Wu, Shujie & Shang, Fanpeng & Yu, Xiaofang & Xu, Chen & Guan, Jingqi & Kan, Qiubin, 2011. "Synthesis of Mo/TNU-9 (TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization," Energy, Elsevier, vol. 36(3), pages 1582-1589.
    6. Rafiq, M.H. & Hustad, J.E., 2011. "Experimental and thermodynamic studies of the catalytic partial oxidation of model biogas using a plasma-assisted gliding arc reactor," Renewable Energy, Elsevier, vol. 36(11), pages 2878-2887.
    7. Khalifeh, Omid & Mosallanejad, Amin & Taghvaei, Hamed & Rahimpour, Mohammad Reza & Shariati, Alireza, 2016. "Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies," Applied Energy, Elsevier, vol. 169(C), pages 585-596.
    8. Guofeng, Xu & Xinwei, Ding, 2012. "Optimization geometries of a vortex gliding-arc reactor for partial oxidation of methane," Energy, Elsevier, vol. 47(1), pages 333-339.
    9. Rahmati, Hamed & Ghorbanzadeh, Atamalek, 2021. "Parallel electrodes gliding plasma: Working principles and application in dry reforming of methane," Energy, Elsevier, vol. 230(C).
    10. Vadikkeettil, Yugesh & Subramaniam, Yugeswaran & Murugan, Ramaswamy & Ananthapadmanabhan, P.V. & Mostaghimi, Javad & Pershin, Larry & Batiot-Dupeyrat, Catherine & Kobayashi, Yasukazu, 2022. "Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    12. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2986-2995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.