IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8679-d977450.html
   My bibliography  Save this article

Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming

Author

Listed:
  • Gayatri Udaysinh Ingale

    (Green Process and Energy System Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
    Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

  • Hyun-Min Kwon

    (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

  • Soohwa Jeong

    (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

  • Dongho Park

    (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

  • Whidong Kim

    (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

  • Byeingryeol Bang

    (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

  • Young-Il Lim

    (Center of Sustainable Process Engineering (CoSPE), Department of Chemical Engineering, Hankyoung National University, Anseong-si 17579, Republic of Korea)

  • Sung Won Kim

    (Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea)

  • Youn-Bae Kang

    (Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea)

  • Jungsoo Mun

    (Institute of Technology, Lotte Engineering & Construction Co., Ltd., Seoul 06515, Republic of Korea)

  • Sunwoo Jun

    (Carbon Neutral Research Institute, Samchully Co., Ltd., Osan-si 18102, Republic of Korea)

  • Uendo Lee

    (Green Process and Energy System Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
    Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea)

Abstract

Hydrogen has received substantial attention because of its diverse application in the energy sector. Steam methane reforming (SMR) dominates the current hydrogen production and is the least expensive endothermic reaction to produce grey hydrogen. This technology provides the advantages of low cost and high energy efficiency; however, it emits an enormous amount of CO 2 . Carbon capture storage (CCS) technology helps reduce these emissions by 47% to 53%, producing blue hydrogen. Methane pyrolysis is an alternative to SMR that produces (ideally) CO 2 -free turquoise hydrogen. In practice, methane pyrolysis reduces CO 2 emissions by 71% compared to grey hydrogen and 46% compared to blue hydrogen. While carbon dioxide emissions decrease with CCS, fugitive methane emissions (FMEs) for blue and turquoise hydrogen are higher than those for grey hydrogen because of the increased use of natural gas to power carbon capture. We undertake FMEs of 3.6% of natural gas consumption for individual processes. In this study, we also explore the utilization of biogas as a feedstock and additional Boudouard reactions for efficient utilization of solid carbon from methane pyrolysis and carbon dioxide from biogas. The present study focuses on possible ways to reduce overall emissions from turquoise hydrogen to provide solutions for a sustainable low-CO 2 energy source.

Suggested Citation

  • Gayatri Udaysinh Ingale & Hyun-Min Kwon & Soohwa Jeong & Dongho Park & Whidong Kim & Byeingryeol Bang & Young-Il Lim & Sung Won Kim & Youn-Bae Kang & Jungsoo Mun & Sunwoo Jun & Uendo Lee, 2022. "Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming," Energies, MDPI, vol. 15(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8679-:d:977450
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Yuriy Zagashvili & Aleksey Kuzmin & George Buslaev & Valentin Morenov, 2021. "Small-Scaled Production of Blue Hydrogen with Reduced Carbon Footprint," Energies, MDPI, vol. 14(16), pages 1-11, August.
    3. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    4. Robert Kaczmarczyk, 2021. "Thermodynamic Analysis of the Effect of Green Hydrogen Addition to a Fuel Mixture on the Steam Methane Reforming Process," Energies, MDPI, vol. 14(20), pages 1-14, October.
    5. Lahijani, Pooya & Zainal, Zainal Alimuddin & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2015. "Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 615-632.
    6. Tamás I. Korányi & Miklós Németh & Andrea Beck & Anita Horváth, 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, MDPI, vol. 15(17), pages 1-14, August.
    7. Ashton Swartbooi & Kutemba K. Kapanji-Kakoma & Nicholas M. Musyoka, 2022. "From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
    8. Sgouris Sgouridis & Michael Carbajales-Dale & Denes Csala & Matteo Chiesa & Ugo Bardi, 2019. "Comparative net energy analysis of renewable electricity and carbon capture and storage," Nature Energy, Nature, vol. 4(6), pages 456-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    2. Mateusz Wnukowski, 2023. "Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products," Energies, MDPI, vol. 16(18), pages 1-34, September.
    3. Iris Kral & Gerhard Piringer & Molly K. Saylor & Javier Lizasoain & Andreas Gronauer & Alexander Bauer, 2020. "Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
    4. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    8. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    9. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    10. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    11. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    12. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
    13. Du, Hong & Ma, Xiuyun & Jiang, Miao & Yan, Peifang & Zhang, Z.Conrad, 2021. "Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas," Energy, Elsevier, vol. 221(C).
    14. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    15. Dong Kyoo Park & Ji-Hyeon Kim & Hyo-Sik Kim & Jin-Ho Kim & Jae-Hong Ryu, 2023. "Possibility Study in CO 2 Free Hydrogen Production Using Dodecane (C 12 H 26 ) from Plasma Reaction," Energies, MDPI, vol. 16(4), pages 1-13, February.
    16. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    17. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Alexander Leonidovich Vasiliev & Yuriy Alekseevich Kurskii & Anna Gennadievna Ivanova & Andrey Leonidovich Golovin & Dmitry Alekseevich Shirokov & D, 2023. "Non-Thermal Plasma Pyrolysis of Fuel Oil in the Liquid Phase," Energies, MDPI, vol. 16(10), pages 1-20, May.
    18. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    20. André Wolf, 2022. "Sustainable Carbon Cycles: A Framework for the Ramp-up of Carbon Capture?," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 57(4), pages 260-266, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8679-:d:977450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.