IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5847-d636223.html
   My bibliography  Save this article

Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy

Author

Listed:
  • Niccolò Caramanico

    (Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
    These authors contributed equally.)

  • Giuseppe Di Florio

    (Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
    These authors contributed equally.)

  • Maria Camilla Baratto

    (Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy)

  • Viviana Cigolotti

    (Portici Research Center, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Piazzale EnricoFermi 1, 80055 Naples, Italy)

  • Riccardo Basosi

    (Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy)

  • Elena Busi

    (Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy)

Abstract

The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems, in addition to their environmental performance, it is necessary, however, to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario, using a homeowner perspective approach. Moreover, two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings, but their high capital costs still would make the investments not profitable. However, the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary, the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis, environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost, the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one, while the reversible-Solid Oxide Fuel Cell system reduces it.

Suggested Citation

  • Niccolò Caramanico & Giuseppe Di Florio & Maria Camilla Baratto & Viviana Cigolotti & Riccardo Basosi & Elena Busi, 2021. "Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy," Energies, MDPI, vol. 14(18), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5847-:d:636223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5847/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5847/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    2. Sorace, Marco & Gandiglio, Marta & Santarelli, Massimo, 2017. "Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump," Energy, Elsevier, vol. 120(C), pages 262-275.
    3. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    4. Poponi, Daniele & Basosi, Riccardo & Kurdgelashvili, Lado, 2021. "Subsidisation cost analysis of renewable energy deployment: A case study on the Italian feed-in tariff programme for photovoltaics," Energy Policy, Elsevier, vol. 154(C).
    5. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2015. "Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector," Applied Energy, Elsevier, vol. 143(C), pages 370-382.
    6. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    7. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    8. Rosalie Arendt & Till M. Bachmann & Masaharu Motoshita & Vanessa Bach & Matthias Finkbeiner, 2020. "Comparison of Different Monetization Methods in LCA: A Review," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    9. Nguyen, Thu Lan Thi & Laratte, Bertrand & Guillaume, Bertrand & Hua, Anthony, 2016. "Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 13-23.
    10. Rossi, Federico & Heleno, Miguel & Basosi, Riccardo & Sinicropi, Adalgisa, 2021. "LCA driven solar compensation mechanism for Renewable Energy Communities: the Italian case," Energy, Elsevier, vol. 235(C).
    11. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    12. Rogers, J.G. & Cooper, S.J.G. & O’Grady, Á. & McManus, M.C. & Howard, H.R. & Hammond, G.P., 2015. "The 20% house – An integrated assessment of options for reducing net carbon emissions from existing UK houses," Applied Energy, Elsevier, vol. 138(C), pages 108-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Wnukowski, 2023. "Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products," Energies, MDPI, vol. 16(18), pages 1-34, September.
    2. Khaled M. A. Salim & Ruhanita Maelah & Hawa Hishamuddin & Amizawati Mohd Amir & Mohd Nizam Ab Rahman, 2022. "Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    3. Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
    4. Yishu Zhou & Joseph D. Smith & Greg Gelles, 2022. "Teaching Energy Economics in the GCC: A Synergistic Approach between Engineering and Economics," Energies, MDPI, vol. 15(19), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    2. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    4. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
    5. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    6. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
    7. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    8. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    9. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    10. Alexander R. Hartwell & Cole A. Wilhelm & Thomas S. Welles & Ryan J. Milcarek & Jeongmin Ahn, 2022. "Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    11. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    12. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    13. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    14. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    15. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    16. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    17. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    18. Marrasso, E. & Roselli, C. & Sasso, M. & Tariello, F., 2019. "Comparison of centralized and decentralized air-conditioning systems for a multi-storey/multi users building integrated with electric and diesel vehicles and considering the evolution of the national ," Energy, Elsevier, vol. 177(C), pages 319-333.
    19. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    20. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5847-:d:636223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.