IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp1198-1214.html
   My bibliography  Save this article

A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems

Author

Listed:
  • Polverino, Pierpaolo
  • Sorrentino, Marco
  • Pianese, Cesare

Abstract

This work illustrates an innovative diagnostic technique able to improve fault isolability in Solid Oxide Fuel Cell (SOFC) energy conversion systems. On-board sensor reduction may induce fault clustering and, thus, hinder univocal fault isolation. According to the proposed technique, isolated system component sub-models, fed with faulty inputs, can be used to solve this issue. These models provide a set of redundant residuals, which react only if the related component is under faulty state. The technique is characterized and tested in simulated environment on an SOFC Anode Off-Gas Recycling (AOGR) system. Hydrogen external leakage, fuel and air heat exchangers efficiency reduction and recirculation unit malfunction are addressed and implemented in the complete system model. This latter is used to simulate system variables in both nominal and faulty conditions and compute residuals for fault detection and isolation. The sub-models are then used to introduce further residuals, and their behaviour is investigated at different fault magnitudes. The analysis is firstly performed in an ideal case scenario, considering the fault isolability that can be theoretically achieved. Then, practical application of the diagnostic algorithm is discussed, considering quantitative residuals deviation and properly analysing the effects of feeding the sub-models with inputs provided by both faulty and nominal models. The achieved results confirm the capability of the proposed approach to univocally isolate the considered faults in all the investigated conditions. Moreover, the analysis of the real case scenario proved the proposed algorithm suitable also for real applications.

Suggested Citation

  • Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1198-1214
    DOI: 10.1016/j.apenergy.2017.05.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    2. Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.
    3. Yan, Dong & Zhang, Chi & Liang, Linjiang & Li, Kai & Jia, Lichao & Pu, Jian & Jian, Li & Li, Xi & Zhang, Tao, 2016. "Degradation analysis and durability improvement for SOFC 1-cell stack," Applied Energy, Elsevier, vol. 175(C), pages 414-420.
    4. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2015. "Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector," Applied Energy, Elsevier, vol. 143(C), pages 370-382.
    5. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    6. Santin, Marco & Traverso, Alberto & Magistri, Loredana & Massardo, Aristide, 2010. "Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels," Energy, Elsevier, vol. 35(2), pages 1077-1083.
    7. Obara, Shin’ya, 2015. "Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics," Applied Energy, Elsevier, vol. 141(C), pages 19-31.
    8. Sharifzadeh, Mahdi & Meghdari, Mojtaba & Rashtchian, Davood, 2017. "Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety," Applied Energy, Elsevier, vol. 185(P1), pages 345-361.
    9. Strazza, C. & Del Borghi, A. & Costamagna, P. & Traverso, A. & Santin, M., 2010. "Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships," Applied Energy, Elsevier, vol. 87(5), pages 1670-1678, May.
    10. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    11. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallo, Marco & Costabile, Carmine & Sorrentino, Marco & Polverino, Pierpaolo & Pianese, Cesare, 2020. "Development and application of a comprehensive model-based methodology for fault mitigation of fuel cell powered systems," Applied Energy, Elsevier, vol. 279(C).
    2. Ying Tian & Qiang Zou & Jin Han, 2021. "Data-Driven Fault Diagnosis for Automotive PEMFC Systems Based on the Steady-State Identification," Energies, MDPI, vol. 14(7), pages 1-17, March.
    3. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
    4. Sorrentino, Marco & Bruno, Marco & Trifirò, Alena & Rizzo, Gianfranco, 2019. "An innovative energy efficiency metric for data analytics and diagnostics in telecommunication applications," Applied Energy, Elsevier, vol. 242(C), pages 1539-1548.
    5. Xiao-Long Wu & Hong Zhang & Hongli Liu & Yuan-Wu Xu & Jingxuan Peng & Zhiping Xia & Yongan Wang, 2022. "Modeling Analysis of SOFC System Oriented to Working Condition Identification," Energies, MDPI, vol. 15(5), pages 1-19, February.
    6. Gallo, Marco & Polverino, Pierpaolo & Mougin, Julie & Morel, Bertrand & Pianese, Cesare, 2020. "Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction," Applied Energy, Elsevier, vol. 279(C).
    7. Max Emil S. Trothe & Hamid Reza Shaker & Muhyiddine Jradi & Krzysztof Arendt, 2019. "Fault Isolability Analysis and Optimal Sensor Placement for Fault Diagnosis in Smart Buildings," Energies, MDPI, vol. 12(9), pages 1-12, April.
    8. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    9. van Biert, L. & Visser, K. & Aravind, P.V., 2020. "A comparison of steam reforming concepts in solid oxide fuel cell systems," Applied Energy, Elsevier, vol. 264(C).
    10. Zhang, Zehan & Li, Shuanghong & Xiao, Yawen & Yang, Yupu, 2019. "Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning," Applied Energy, Elsevier, vol. 233, pages 930-942.
    11. Zhong, Xiaobo & Xu, Yuanwu & Liu, Yanlin & Wu, Xiaolong & Zhao, Dongqi & Zheng, Yi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Root cause analysis and diagnosis of solid oxide fuel cell system oscillations based on data and topology-based model," Applied Energy, Elsevier, vol. 267(C).
    12. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    13. Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Kai Xiong & Chuangting Chen & Mumin Rao & Zhiping Peng & Xi Li & Jingxuan Peng, 2022. "A Data-Driven Fault Diagnosis Method for Solid Oxide Fuel Cell Systems," Energies, MDPI, vol. 15(7), pages 1-16, March.
    14. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    2. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    3. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    4. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    5. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    6. Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.
    7. Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
    8. Zhu, Jiang & Lin, Zijing, 2018. "Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions," Applied Energy, Elsevier, vol. 231(C), pages 22-28.
    9. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    10. Rossi, Iacopo & Traverso, Alberto & Tucker, David, 2019. "SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation," Applied Energy, Elsevier, vol. 238(C), pages 1543-1550.
    11. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    12. Wei, Ya & Stanford, Russell J., 2019. "Parameter identification of solid oxide fuel cell by Chaotic Binary Shark Smell Optimization method," Energy, Elsevier, vol. 188(C).
    13. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    14. Shi, Wangying & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Guo, Yaming, 2019. "Operating limitation and degradation modeling of micro solid oxide fuel cell-combined heat and power system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
    17. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
    18. Safari, Amin & Shahsavari, Hossein & Salehi, Javad, 2018. "A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems," Energy, Elsevier, vol. 149(C), pages 397-413.
    19. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    20. Zhang, Zehan & Li, Shuanghong & Xiao, Yawen & Yang, Yupu, 2019. "Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning," Applied Energy, Elsevier, vol. 233, pages 930-942.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1198-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.