IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7983-d852423.html
   My bibliography  Save this article

Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance

Author

Listed:
  • Alexander R. Hartwell

    (Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse, NY 13244, USA)

  • Cole A. Wilhelm

    (Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse, NY 13244, USA)

  • Thomas S. Welles

    (Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse, NY 13244, USA)

  • Ryan J. Milcarek

    (School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85281, USA)

  • Jeongmin Ahn

    (Mechanical and Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse, NY 13244, USA)

Abstract

There is tremendous potential to utilize the exhaust gases and heat already present within combustion chambers to generate electrical power via solid oxide fuel cells (SOFCs). Variations in system design have been investigated as well as thorough examinations into the impacts of environmental conditions and fuel composition/concentration on SOFC performance. In an attempt to isolate the impacts of carbon monoxide and hydrogen concentration ratios within the exhaust stream, this work utilizes multi-temperature performance analyses with simulated methane combustion exhaust as fuel combined with dilute hydrogen baseline tests. These comparisons reveal the impacts of the complex reaction pathways carbon monoxide participates in when used as an SOFC fuel. Despite these complexities, performance reductions as a result of the presence of carbon monoxide are low when compared to similarly dilute hydrogen as a fuel. This provides further motivation for the continued development of SOFC-CHP systems. Stability testing performed over 80 h reveals the need for careful control of the operating environment as well as signs of carbon deposition. As a result of gas flow disruption, impacts of anode oxidation that may normally not hinder power production become significant factors in addition to coarsening of the anode material. Thermal management and strategies to minimize these impacts are a topic of future research.

Suggested Citation

  • Alexander R. Hartwell & Cole A. Wilhelm & Thomas S. Welles & Ryan J. Milcarek & Jeongmin Ahn, 2022. "Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7983-:d:852423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuqing & Zeng, Hongyu & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Start-up and operation characteristics of a flame fuel cell unit," Applied Energy, Elsevier, vol. 178(C), pages 415-421.
    2. Wang, Yuqing & Zeng, Hongyu & Shi, Yixiang & Cao, Tianyu & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner," Energy, Elsevier, vol. 109(C), pages 117-123.
    3. Zeng, Hongyu & Gong, Siqi & Shi, Yixiang & Wang, Yuqing & Cai, Ningsheng, 2019. "Micro-tubular solid oxide fuel cell stack operated with catalytically enhanced porous media fuel-rich combustor," Energy, Elsevier, vol. 179(C), pages 154-162.
    4. Sorace, Marco & Gandiglio, Marta & Santarelli, Massimo, 2017. "Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump," Energy, Elsevier, vol. 120(C), pages 262-275.
    5. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Milcarek, Ryan J. & DeBiase, Vincent P. & Ahn, Jeongmin, 2020. "Investigation of startup, performance and cycling of a residential furnace integrated with micro-tubular flame-assisted fuel cells for micro-combined heat and power," Energy, Elsevier, vol. 196(C).
    3. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    4. Ghotkar, Rhushikesh & Milcarek, Ryan J., 2020. "Investigation of flame-assisted fuel cells integrated with an auxiliary power unit gas turbine," Energy, Elsevier, vol. 204(C).
    5. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    6. Milcarek, Ryan J. & Ahn, Jeongmin, 2019. "Micro-tubular flame-assisted fuel cells running methane, propane and butane: On soot, efficiency and power density," Energy, Elsevier, vol. 169(C), pages 776-782.
    7. Zeng, Hongyu & Gong, Siqi & Shi, Yixiang & Wang, Yuqing & Cai, Ningsheng, 2019. "Micro-tubular solid oxide fuel cell stack operated with catalytically enhanced porous media fuel-rich combustor," Energy, Elsevier, vol. 179(C), pages 154-162.
    8. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
    9. Rhushikesh Ghotkar & Ellen B. Stechel & Ivan Ermanoski & Ryan J. Milcarek, 2020. "Hybrid Fuel Cell—Supercritical CO 2 Brayton Cycle for CO 2 Sequestration-Ready Combined Heat and Power," Energies, MDPI, vol. 13(19), pages 1-20, September.
    10. Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
    11. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    12. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
    14. Marrasso, E. & Roselli, C. & Sasso, M. & Tariello, F., 2019. "Comparison of centralized and decentralized air-conditioning systems for a multi-storey/multi users building integrated with electric and diesel vehicles and considering the evolution of the national ," Energy, Elsevier, vol. 177(C), pages 319-333.
    15. Roselli, C. & Marrasso, E. & Tariello, F. & Sasso, M., 2020. "How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system," Energy, Elsevier, vol. 201(C).
    16. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    17. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    18. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    19. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    20. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7983-:d:852423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.