IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4121-d783505.html
   My bibliography  Save this article

Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells

Author

Listed:
  • Rhushikesh Ghotkar

    (School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106, USA)

  • Ryan J. Milcarek

    (School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287-6106, USA)

Abstract

Despite the significant experimental work in flame-assisted fuel cells (FFCs), a detailed model of FFC polarization losses does not exist in the literature. This paper thus presents a combination of theoretical and empirical models to describe the performance of FFCs. Previous models for solid oxide fuel cell (SOFC) polarization losses typically assumed values of the charge transfer coefficient (α) of 0.5 and a Nernst diffusion layer thickness (δ) equal to the anode thickness. The theoretical model developed in this work, parametrized in α and δ, is empirically fitted to the experimental polarization curves to understand the variation of these parameters while the FFC operates with different fuel partial pressures. Model results indicate that at low fuel concentrations (C R,0 ), the current density of the fuel cell (j) is limited by mass transfer limitations. As C R,0 increases, j is then limited by activation due to the limited number of activation sites in the fuel cell. Activation loss (ɳ act ) remains constant at low C R,0 (concentration limited) and increases rapidly with an increase in C R,0 under activation-limited conditions. The value of α, which varies significantly from 0.5, under concentration-limited conditions remains constant at ~0.24 and decreases rapidly with C R,0 under activation-limited conditions. The value of δ, which is much smaller than anode thickness, remains constant at ~10 µm under concentration-limited conditions and increases to a constant value of ~17.5 µm under activation limitations. Overcoming activation losses under high C R,0 conditions requires further investigation of FFCs.

Suggested Citation

  • Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4121-:d:783505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuqing & Zeng, Hongyu & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Start-up and operation characteristics of a flame fuel cell unit," Applied Energy, Elsevier, vol. 178(C), pages 415-421.
    2. Wang, Yuqing & Zeng, Hongyu & Shi, Yixiang & Cao, Tianyu & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner," Energy, Elsevier, vol. 109(C), pages 117-123.
    3. Zongping Shao & Sossina M. Haile & Jeongmin Ahn & Paul D. Ronney & Zhongliang Zhan & Scott A. Barnett, 2005. "A thermally self-sustained micro solid-oxide fuel-cell stack with high power density," Nature, Nature, vol. 435(7043), pages 795-798, June.
    4. Baldi, Francesco & Moret, Stefano & Tammi, Kari & Maréchal, François, 2020. "The role of solid oxide fuel cells in future ship energy systems," Energy, Elsevier, vol. 194(C).
    5. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
    6. Ghotkar, Rhushikesh & Milcarek, Ryan J., 2020. "Investigation of flame-assisted fuel cells integrated with an auxiliary power unit gas turbine," Energy, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Alexander R. Hartwell & Cole A. Wilhelm & Thomas S. Welles & Ryan J. Milcarek & Jeongmin Ahn, 2022. "Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    3. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    4. Zeng, Hongyu & Gong, Siqi & Shi, Yixiang & Wang, Yuqing & Cai, Ningsheng, 2019. "Micro-tubular solid oxide fuel cell stack operated with catalytically enhanced porous media fuel-rich combustor," Energy, Elsevier, vol. 179(C), pages 154-162.
    5. Brent B. Skabelund & Joseph Elio & Ryan J. Milcarek, 2021. "Techno-Economic Assessment of a Hybrid Gas Tank Hot Water Combined Heat and Power System," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    6. Rhushikesh Ghotkar & Ellen B. Stechel & Ivan Ermanoski & Ryan J. Milcarek, 2020. "Hybrid Fuel Cell—Supercritical CO 2 Brayton Cycle for CO 2 Sequestration-Ready Combined Heat and Power," Energies, MDPI, vol. 13(19), pages 1-20, September.
    7. Milcarek, Ryan J. & Ahn, Jeongmin, 2019. "Micro-tubular flame-assisted fuel cells running methane, propane and butane: On soot, efficiency and power density," Energy, Elsevier, vol. 169(C), pages 776-782.
    8. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    9. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    10. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    11. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    13. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    14. Ghotkar, Rhushikesh & Milcarek, Ryan J., 2020. "Investigation of flame-assisted fuel cells integrated with an auxiliary power unit gas turbine," Energy, Elsevier, vol. 204(C).
    15. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    16. Chakrabarti, Mohammed Harun & Mjalli, Farouq Sabri & AlNashef, Inas Muen & Hashim, Mohd. Ali & Hussain, Mohd. Azlan & Bahadori, Laleh & Low, Chee Tong John, 2014. "Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 254-270.
    17. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    19. Hong Liu & Zoheb Akhtar & Peiwen Li & Kai Wang, 2014. "Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells," Energies, MDPI, vol. 7(1), pages 1-18, January.
    20. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4121-:d:783505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.