IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007874.html
   My bibliography  Save this article

A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment

Author

Listed:
  • Tera, Ibrahim
  • Zhang, Shengan
  • Liu, Guilian

Abstract

Integrated polygeneration systems have emerged as an effective and sustainable solution for maximizing the utilization of renewable fuels, and offer multiple economic and environmental advantages. This work proposes a new polygeneration system to produce hydrogen, heat, and power based on integrating biomass gasification, solid oxide fuel cell, gas turbine, organic Rankine cycle, and supercritical CO2 Brayton cycle. The proposed system is simulated in Aspen Plus, and the performance is evaluated based on energy, exergy, economic, and emergy analyses. The overall energy and exergy efficiencies attain 76.82% and 60.64%, respectively. The levelized cost of hydrogen is 4.06 $/kg, comparable to those reported in the literature, and the yearly income generated through revenue sales of hydrogen, heat, and electricity can reach up to 58.42 M$. The emergy analysis showed that the system depends on purchased inputs but can efficiently use the available resources to generate valuable products. The hybrid system has low environmental impacts in the long term. It can serve as a low-cost, low-carbon, and profitable polygeneration system of hydrogen, heat, and power, with a good quality of energy conversion.

Suggested Citation

  • Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007874
    DOI: 10.1016/j.energy.2024.131015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.