IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v286y2021ics0306261921000581.html
   My bibliography  Save this article

Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents

Author

Listed:
  • Habibollahzade, Ali
  • Rosen, Marc A.

Abstract

An optimum carbonaceous feedstock is determined for a syngas fueled solid oxide fuel cell (SOFC) for enhanced performance and reduced levelized cost and CO2 emissions. Four configurations are investigated: simple SOFC, and SOFC with the anode and/or cathode gas recycling. The effect of enriching the gasification medium with oxygen is also investigated. Thermodynamics, economic and environmental aspects of the systems are then comprehensively compared. Finally, multi-criteria particle swarm optimization is employed considering various anode and cathode recycling ratios, and feedstock compositions. The results indicate that optimum values of local power output, and levelized cost and emissions are observed at higher current densities and fuel utilization factors. The SOFC with anode and cathode recycling performs better in almost all conditions. The results further indicate that enriching the gasification medium with oxygen can greatly improve system performance while increasing the levelized cost of products. The optimization results show that exergy efficiency, levelized cost of products, and levelized emissions respectively are 43.7%, 47.2 $/MWh, and 0.530 t/MWh, for a syngas fueled SOFC using air, and 44.2%, 67.9 $/MWh, and 0.481 t/MWh, for a syngas fueled SOFC using O2-enriched air. An appropriate feedstock for a syngas fueled SOFC with anode and cathode gas recycling is CH2.315O0.027 with 77.2 wt% carbon, 15.0 wt% hydrogen, and 2.8 wt% oxygen to achieve a well-balanced condition between exergetic, economic, and environmental indicators. In general, anode and cathode gas recycling and feedstock composition are observed to be influential parameters on the performance of SOFCs.

Suggested Citation

  • Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000581
    DOI: 10.1016/j.apenergy.2021.116497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921000581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    2. Hosseinpour, Javad & Chitsaz, Ata & Liu, Lin & Gao, Yang, 2020. "Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents," Renewable Energy, Elsevier, vol. 145(C), pages 757-771.
    3. Jia, Junxi & Li, Qiang & Luo, Ming & Wei, Liming & Abudula, Abuliti, 2011. "Effects of gas recycle on performance of solid oxide fuel cell power systems," Energy, Elsevier, vol. 36(2), pages 1068-1075.
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
    5. Subotić, Vanja & Baldinelli, Arianna & Barelli, Linda & Scharler, Robert & Pongratz, Gernot & Hochenauer, Christoph & Anca-Couce, Andrés, 2019. "Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour," Applied Energy, Elsevier, vol. 256(C).
    6. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    7. Lyu, Zewei & Meng, Hao & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Xue, Huaqing & Zhao, Yongming & Zhang, Fudong, 2020. "Comparison of off-gas utilization modes for solid oxide fuel cell stacks based on a semi-empirical parametric model," Applied Energy, Elsevier, vol. 270(C).
    8. Sadeghi, M. & Mehr, A.S. & Zar, M. & Santarelli, M., 2018. "Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier," Energy, Elsevier, vol. 148(C), pages 16-31.
    9. Gadsbøll, Rasmus Østergaard & Thomsen, Jesper & Bang-Møller, Christian & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2017. "Solid oxide fuel cells powered by biomass gasification for high efficiency power generation," Energy, Elsevier, vol. 131(C), pages 198-206.
    10. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio & Cigolotti, Viviana & Nam, Suk Woo & Yoon, Kyung Joong, 2018. "Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier," Applied Energy, Elsevier, vol. 227(C), pages 80-91.
    11. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    12. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    13. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    14. Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    2. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    3. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    4. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).
    5. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    6. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).
    2. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    3. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    4. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    5. Subotić, Vanja & Baldinelli, Arianna & Barelli, Linda & Scharler, Robert & Pongratz, Gernot & Hochenauer, Christoph & Anca-Couce, Andrés, 2019. "Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour," Applied Energy, Elsevier, vol. 256(C).
    6. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    7. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    8. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    9. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    10. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    11. Cavalli, A. & Fernandes, A. & Aravind, P.V., 2021. "Thermodynamic analysis of an improved integrated biomass gasifier solid oxide fuel cell micro combined heat and power system," Energy, Elsevier, vol. 231(C).
    12. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Liu, Wenjun & Shi, Xiaomin, 2022. "Converting waste into electric energy and carbon fixation through biosyngas-fueled SOFC hybrid system: A simulation study," Renewable Energy, Elsevier, vol. 193(C), pages 725-743.
    13. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).
    14. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    15. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    17. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    18. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
    19. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    20. Marek Skrzypkiewicz & Michal Wierzbicki & Stanislaw Jagielski & Yevgeniy Naumovich & Konrad Motylinski & Jakub Kupecki & Agnieszka Zurawska & Magdalena Kosiorek, 2022. "Influence of the Contamination of Fuel with Fly Ash Originating from Biomass Gasification on the Performance of the Anode-Supported SOFC," Energies, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.