IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310860.html
   My bibliography  Save this article

Investigation of flame-assisted fuel cells integrated with an auxiliary power unit gas turbine

Author

Listed:
  • Ghotkar, Rhushikesh
  • Milcarek, Ryan J.

Abstract

Owing to several unsuccessful attempts of integrating dual chambered solid oxide fuel cell stack with the auxiliary power unit (APU) gas turbine, a novel concept for integration of flame-assisted fuel cells (FFC) with the gas turbine of an APU is presented in this paper. A complete analytical model of the FFC integrated hybrid system is presented. The FFC gas turbine hybrid system is predicted to be up to 30% more efficient at sea level and 16% more efficient at cruising altitudes compared to standard gas turbine cycle. A FFC is characterized experimentally with model combustion exhaust for fuel-rich combustion of JP-5. The fuel cell displayed 75% fuel utilization at the operating voltage of 0.5 V, which is higher than previous studies in this field. The analytically predicted reversible voltage shows good agreement with the open circuit voltage of the FFC experimental results. Analysis of temperature entropy and pressure volume diagrams of the proposed system shows that as the equivalence ratio increases the portion of the total FFC gas turbine hybrid power generated by gas turbine decreases. The breakeven distance and the complexity of the proposed FFC gas turbine hybrid is significantly lower than previous studies.

Suggested Citation

  • Ghotkar, Rhushikesh & Milcarek, Ryan J., 2020. "Investigation of flame-assisted fuel cells integrated with an auxiliary power unit gas turbine," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310860
    DOI: 10.1016/j.energy.2020.117979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuqing & Zeng, Hongyu & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Start-up and operation characteristics of a flame fuel cell unit," Applied Energy, Elsevier, vol. 178(C), pages 415-421.
    2. Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
    3. Milcarek, Ryan J. & DeBiase, Vincent P. & Ahn, Jeongmin, 2020. "Investigation of startup, performance and cycling of a residential furnace integrated with micro-tubular flame-assisted fuel cells for micro-combined heat and power," Energy, Elsevier, vol. 196(C).
    4. Milcarek, Ryan J. & Ahn, Jeongmin, 2019. "Micro-tubular flame-assisted fuel cells running methane, propane and butane: On soot, efficiency and power density," Energy, Elsevier, vol. 169(C), pages 776-782.
    5. Zeng, Hongyu & Gong, Siqi & Shi, Yixiang & Wang, Yuqing & Cai, Ningsheng, 2019. "Micro-tubular solid oxide fuel cell stack operated with catalytically enhanced porous media fuel-rich combustor," Energy, Elsevier, vol. 179(C), pages 154-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Jing, Xiuhui & Miao, He & Xu, Jingxiang & Lin, Peijian & Li, Ping & Liang, Chaoyu & Wu, Yu & Yuan, Jinliang, 2021. "The physical properties and effects of sintering conditions on rSOFC fuel electrodes evaluated by molecular dynamics simulation," Energy, Elsevier, vol. 216(C).
    2. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    3. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Brent B. Skabelund & Joseph Elio & Ryan J. Milcarek, 2021. "Techno-Economic Assessment of a Hybrid Gas Tank Hot Water Combined Heat and Power System," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    5. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    6. Rhushikesh Ghotkar & Ellen B. Stechel & Ivan Ermanoski & Ryan J. Milcarek, 2020. "Hybrid Fuel Cell—Supercritical CO 2 Brayton Cycle for CO 2 Sequestration-Ready Combined Heat and Power," Energies, MDPI, vol. 13(19), pages 1-20, September.
    7. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Wang, Zhanxue, 2023. "A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Rhushikesh Ghotkar & Ellen B. Stechel & Ivan Ermanoski & Ryan J. Milcarek, 2020. "Hybrid Fuel Cell—Supercritical CO 2 Brayton Cycle for CO 2 Sequestration-Ready Combined Heat and Power," Energies, MDPI, vol. 13(19), pages 1-20, September.
    3. Brent B. Skabelund & Joseph Elio & Ryan J. Milcarek, 2021. "Techno-Economic Assessment of a Hybrid Gas Tank Hot Water Combined Heat and Power System," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    4. Alexander R. Hartwell & Cole A. Wilhelm & Thomas S. Welles & Ryan J. Milcarek & Jeongmin Ahn, 2022. "Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    5. Milcarek, Ryan J. & DeBiase, Vincent P. & Ahn, Jeongmin, 2020. "Investigation of startup, performance and cycling of a residential furnace integrated with micro-tubular flame-assisted fuel cells for micro-combined heat and power," Energy, Elsevier, vol. 196(C).
    6. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    7. Mingfei Li & Jiajian Wu & Zhengpeng Chen & Jiangbo Dong & Zhiping Peng & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2022. "Data-Driven Voltage Prognostic for Solid Oxide Fuel Cell System Based on Deep Learning," Energies, MDPI, vol. 15(17), pages 1-20, August.
    8. Yue Teng & Ho Yeon Lee & Haesu Lee & Yoon Ho Lee, 2022. "Effect of Sputtering Pressure on the Nanostructure and Residual Stress of Thin-Film YSZ Electrolyte," Sustainability, MDPI, vol. 14(15), pages 1-9, August.
    9. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    10. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    11. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    12. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    13. Rhushikesh Ghotkar & Ryan J. Milcarek, 2022. "Modeling of the Kinetic Factors in Flame-Assisted Fuel Cells," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    14. Park, Heejin & Jung, Yoonju & Park, Chungi & Lee, Jaeseung & Ghasemi, Masoomeh & Alam, Afroz & Kim, Hyeonjin & Kim, Jinwook & Park, Sojin & Choi, Kyungshik & You, Hyunseok & Ju, Hyunchul, 2023. "Performance evaluation and economic feasibility of a PAFC-based multi-energy hub system in South Korea," Energy, Elsevier, vol. 278(PB).
    15. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    16. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    17. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    18. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    19. Mumin Rao & Li Wang & Chuangting Chen & Kai Xiong & Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Junli Xu & Xi Li, 2022. "Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    20. Chmielniak, Tadeusz & Remiorz, Leszek, 2020. "Entropy analysis of hydrogen production in electrolytic processes," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.