IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp235-246.html
   My bibliography  Save this article

Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy

Author

Listed:
  • Damo, U.M.
  • Ferrari, M.L.
  • Turan, A.
  • Massardo, A.F.

Abstract

This paper reports a review of an environmentally clean and efficient source of energy such as solid oxide fuel cell hybrid systems. Due to climate concerns, most nations are seeking alternative means of generating energy from a clean, efficient and environmental-friendly method. However, this has proven a big hurdle for both academic and industry researchers over many years. Currently, practical and technically feasible solution can be obtained via an integration of a microturbine and a fuel cell (hybrid systems). Combining the two distinct systems in a hybrid arrangement the efficiency of the microturbine increases from 25 to 30% to the 60–65% range. Hence, this paper outlines an engineering power generation solution towards the acute global population growth, the growing need, environmental concerns, intelligent use of energy with attendant environmental and hybrid system layouts concerning arising problems and tentative proposed solutions. Furthermore, advantages of a solid oxide fuel cell hybrid systems with respect to the other technologies are identified and discussed rationally. Special attention is devoted to modelling with software and emulator rigs and system prototypes. The paper also reviews the limitations and the benefits of these hybrid systems in relationship with energy, environment and sustainable development. Few potential applications, as long-term potential actions for sustainable development, and the future of such devices are further discussed.

Suggested Citation

  • Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:235-246
    DOI: 10.1016/j.energy.2018.11.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Operating strategies to minimize degradation in fuel cell gas turbine hybrids," Applied Energy, Elsevier, vol. 192(C), pages 437-445.
    2. Oryshchyn, Danylo & Harun, Nor Farida & Tucker, David & Bryden, Kenneth M. & Shadle, Lawrence, 2018. "Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems," Applied Energy, Elsevier, vol. 228(C), pages 1953-1965.
    3. Wang, Haichao & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling & Zhou, Zhigang, 2015. "Modelling and optimization of the smart hybrid renewable energy for communities (SHREC)," Renewable Energy, Elsevier, vol. 84(C), pages 114-123.
    4. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    5. Goedecke, Martin & Therdthianwong, Supaporn & Gheewala, Shabbir H., 2007. "Life cycle cost analysis of alternative vehicles and fuels in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3236-3246, June.
    6. Jurado, Francisco, 2005. "Robust control for fuel cell–microturbine hybrid power plant using biomass," Energy, Elsevier, vol. 30(10), pages 1711-1727.
    7. Barelli, L. & Bidini, G. & Ottaviano, A., 2013. "Part load operation of a SOFC/GT hybrid system: Dynamic analysis," Applied Energy, Elsevier, vol. 110(C), pages 173-189.
    8. Ferrari, Mario L. & Massardo, Aristide F., 2013. "Cathode–anode side interaction in SOFC hybrid systems," Applied Energy, Elsevier, vol. 105(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Ali Reza & Fanaei, Mohammad Ali & Panahi, Mehdi, 2022. "Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system," Applied Energy, Elsevier, vol. 328(C).
    2. Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
    3. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    4. Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
    5. Ferrari, M.L. & Pascenti, M. & Massardo, A.F., 2018. "Validated ejector model for hybrid system applications," Energy, Elsevier, vol. 162(C), pages 1106-1114.
    6. Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
    7. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    8. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    9. Komatsu, Y. & Brus, G. & Kimijima, S. & Szmyd, J.S., 2014. "The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage," Applied Energy, Elsevier, vol. 115(C), pages 352-359.
    10. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    11. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    12. Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Operating strategies to minimize degradation in fuel cell gas turbine hybrids," Applied Energy, Elsevier, vol. 192(C), pages 437-445.
    13. Ferrari, Mario L. & Silvestri, Paolo & Reggio, Federico & Massardo, Aristide F., 2018. "Surge prevention for gas turbines connected with large volume size: Experimental demonstration with a microturbine," Applied Energy, Elsevier, vol. 230(C), pages 1057-1064.
    14. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    15. Shi, Wangying & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Guo, Yaming, 2019. "Operating limitation and degradation modeling of micro solid oxide fuel cell-combined heat and power system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Ferrari, M.L. & Cuneo, A. & Pascenti, M. & Traverso, A., 2017. "Real-time state of charge estimation in thermal storage vessels applied to a smart polygeneration grid," Applied Energy, Elsevier, vol. 206(C), pages 90-100.
    17. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    18. Steilen, Mike & Saletti, Costanza & Heddrich, Marc P. & Friedrich, K. Andreas, 2018. "Analysis of the influence of heat transfer on the stationary operation and performance of a solid oxide fuel cell/gas turbine hybrid power plant," Applied Energy, Elsevier, vol. 211(C), pages 479-491.
    19. Ferrari, Mario L. & Traverso, Alberto & Massardo, Aristide F., 2016. "Smart polygeneration grids: experimental performance curves of different prime movers," Applied Energy, Elsevier, vol. 162(C), pages 622-630.
    20. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:235-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.