IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v110y2013icp173-189.html
   My bibliography  Save this article

Part load operation of a SOFC/GT hybrid system: Dynamic analysis

Author

Listed:
  • Barelli, L.
  • Bidini, G.
  • Ottaviano, A.

Abstract

The hybrid solid oxide fuel cell and gas turbine system is a promising solution in the future small scale power plants, thanks to its high energy/power efficiency with low environmental impact. In fact, due to the synergistic effect of using a high temperature fuel cell such as Solid Oxide Fuel Cell (SOFC) and a recuperative gas turbine (GT), the integrated system efficiency can be significantly improved. The goal of this paper is to develop a complete dynamic model of a hybrid system (HS) for the optimization of the plant components, with particular attention to the heat exchangers, also in consideration to the transient response (in terms of the electricity and the interaction between SOFC and GT) of the whole system. This research activity represents the following part of [1], in which the authors analyzed the steady state behavior of the hybrid system through a zero dimensional model developed in Aspen Plus environment. Specifically, in this paper all the model components presented in [1] were implemented in Matlab®Simulink environment. With the aim to achieve a right dimensioning of the main plant components to guarantee a certain inertia of the system and evaluate the system global performance (efficiency, time response), suitable simulations were carried out. Moreover, the interaction between the system components was investigated during transients, with particular attention to the inertial effect of gas turbine and heat exchangers also on the fuel cell, even if maintained at constant load. The developed dynamic allowed the analysis of the fully functioning of the hybrid system, together with the optimization of the plant components and its control logic at gas turbine part load. Then, the final aim of this study is to fill the void present in the technical literature concerning the analysis of dynamic interaction between components of SOFC/GT hybrid system.

Suggested Citation

  • Barelli, L. & Bidini, G. & Ottaviano, A., 2013. "Part load operation of a SOFC/GT hybrid system: Dynamic analysis," Applied Energy, Elsevier, vol. 110(C), pages 173-189.
  • Handle: RePEc:eee:appene:v:110:y:2013:i:c:p:173-189
    DOI: 10.1016/j.apenergy.2013.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300305X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komatsu, Y. & Kimijima, S. & Szmyd, J.S., 2010. "Performance analysis for the part-load operation of a solid oxide fuel cell–micro gas turbine hybrid system," Energy, Elsevier, vol. 35(2), pages 982-988.
    2. Park, Sung Ku & Ahn, Ji-Ho & Kim, Tong Seop, 2011. "Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture," Applied Energy, Elsevier, vol. 88(9), pages 2976-2987.
    3. Li, Mu & Rao, Ashok D. & Scott Samuelsen, G., 2012. "Performance and costs of advanced sustainable central power plants with CCS and H2 co-production," Applied Energy, Elsevier, vol. 91(1), pages 43-50.
    4. Santin, Marco & Traverso, Alberto & Magistri, Loredana, 2009. "Liquid fuel utilization in SOFC hybrid systems," Applied Energy, Elsevier, vol. 86(10), pages 2204-2212, October.
    5. Bakalis, Diamantis P. & Stamatis, Anastassios G., 2013. "Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation," Applied Energy, Elsevier, vol. 103(C), pages 607-617.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    2. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    3. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    4. Yan, Min & Zeng, Min & Chen, Qiuyang & Wang, Qiuwang, 2012. "Numerical study on carbon deposition of SOFC with unsteady state variation of porosity," Applied Energy, Elsevier, vol. 97(C), pages 754-762.
    5. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    6. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    7. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    8. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    9. Azizi, Mohammad Ali & Brouwer, Jacob & Dunn-Rankin, Derek, 2016. "Analytical investigation of high temperature 1kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation," Applied Energy, Elsevier, vol. 179(C), pages 909-928.
    10. Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.
    11. Wee, Jung-Ho, 2011. "Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4252-4263.
    12. Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2016. "Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system," Energy, Elsevier, vol. 94(C), pages 218-232.
    13. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    14. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio & Cigolotti, Viviana & Nam, Suk Woo & Yoon, Kyung Joong, 2018. "Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier," Applied Energy, Elsevier, vol. 227(C), pages 80-91.
    15. Lv, Xiaojing & Liu, Xing & Gu, Chenghong & Weng, Yiwu, 2016. "Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system," Energy, Elsevier, vol. 99(C), pages 91-102.
    16. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    17. Lv, Xiaojing & Lu, Chaohao & Wang, Yuzhang & Weng, Yiwu, 2015. "Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine," Energy, Elsevier, vol. 91(C), pages 10-19.
    18. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    19. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    20. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Effects of rarefaction, viscous dissipation and rotation mode on the first and second law analyses of rarefied gaseous slip flows confined between a rotating shaft and its concentric housing," Energy, Elsevier, vol. 37(1), pages 359-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:110:y:2013:i:c:p:173-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.