IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922014891.html
   My bibliography  Save this article

Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system

Author

Listed:
  • Dehghan, Ali Reza
  • Fanaei, Mohammad Ali
  • Panahi, Mehdi

Abstract

This study presents a novel approach for hybrid solid oxide fuel cell (SOFC) - gas turbine (GT) system control. The approach is based on a plantwide top-down strategy which leads to a proper selection of the control structure. As a result, while maintaining the system stability and dynamic performance during transients, the system operation is also kept at optimal conditions using simple PI controllers. The optimization cost function is defined to be the unit price of the net produced electricity. The system inlet fuel flow and the power drawn from the SOFC are considered as the main system disturbances. The two-dimensional disturbance space is discretized. Rigorous optimization problems are performed in each disturbance node and variation of system efficiency and constraint values are evaluated. Three different operating regions, with different sets of active constraints, are characterized. Equivalent to the identified operating regions, an efficiency map is also provided which illustrates the achievable system efficiencies in presence of disturbances. Based on the optimization outcomes, the identification of appropriate controlled variables is accomplished in each region. It revealed that to keep near-optimal operation under various operating conditions; the combustion chamber outlet temperature should be treated as a key controlled variable. Finally, dynamic simulations are performed and the proficiency of the proposed control structure is justified. According to the results, maximum SOFC temperature transients in all regions would be less than 2 K.min-1 while variations on the hybrid system output power are kept below 3 % and efficiency loss is restricted to 2 %.

Suggested Citation

  • Dehghan, Ali Reza & Fanaei, Mohammad Ali & Panahi, Mehdi, 2022. "Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014891
    DOI: 10.1016/j.apenergy.2022.120232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schöffer, S.I. & Klein, S.A. & Aravind, P.V. & Pecnik, R., 2021. "A solid oxide fuel cell- supercritical carbon dioxide Brayton cycle hybrid system," Applied Energy, Elsevier, vol. 283(C).
    2. Sapra, Harsh & Stam, Jelle & Reurings, Jeroen & van Biert, Lindert & van Sluijs, Wim & de Vos, Peter & Visser, Klaas & Vellayani, Aravind Purushothaman & Hopman, Hans, 2021. "Integration of solid oxide fuel cell and internal combustion engine for maritime applications," Applied Energy, Elsevier, vol. 281(C).
    3. Huang, Yu & Turan, Ali, 2021. "Mechanical equilibrium operation integrated modelling of recuperative solid oxide fuel cell – gas turbine hybrid systems: Design conditions and off-design analysis," Applied Energy, Elsevier, vol. 283(C).
    4. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    5. Oryshchyn, Danylo & Harun, Nor Farida & Tucker, David & Bryden, Kenneth M. & Shadle, Lawrence, 2018. "Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems," Applied Energy, Elsevier, vol. 228(C), pages 1953-1965.
    6. Harun, Nor Farida & Tucker, David & Adams II, Thomas A., 2017. "Technical challenges in operating an SOFC in fuel flexible gas turbine hybrid systems: Coupling effects of cathode air mass flow," Applied Energy, Elsevier, vol. 190(C), pages 852-867.
    7. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    9. Ferrari, Mario L. & Pascenti, Matteo & Traverso, Alberto N. & Massardo, Aristide F., 2012. "Hybrid system test rig: Chemical composition emulation with steam injection," Applied Energy, Elsevier, vol. 97(C), pages 809-815.
    10. Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
    11. Xu, Haoran & Chen, Bin & Tan, Peng & Xuan, Jin & Maroto-Valer, M. Mercedes & Farrusseng, David & Sun, Qiong & Ni, Meng, 2019. "Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design," Applied Energy, Elsevier, vol. 235(C), pages 602-611.
    12. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    13. Chen, Jinwei & Chen, Yao & Zhang, Huisheng & Weng, Shilie, 2018. "Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors," Energy, Elsevier, vol. 163(C), pages 1-14.
    14. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    15. Wu, Xiao-long & Xu, Yuan-wu & Zhao, Dong-qi & Zhong, Xiao-bo & Li, Dong & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system," Applied Energy, Elsevier, vol. 263(C).
    16. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    17. Barelli, L. & Bidini, G. & Ottaviano, A., 2013. "Part load operation of a SOFC/GT hybrid system: Dynamic analysis," Applied Energy, Elsevier, vol. 110(C), pages 173-189.
    18. Shi, Wangying & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Guo, Yaming, 2019. "Operating limitation and degradation modeling of micro solid oxide fuel cell-combined heat and power system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Ferrari, Mario L. & Massardo, Aristide F., 2013. "Cathode–anode side interaction in SOFC hybrid systems," Applied Energy, Elsevier, vol. 105(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    2. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    3. Zaccaria, V. & Tucker, D. & Traverso, A., 2016. "Transfer function development for SOFC/GT hybrid systems control using cold air bypass," Applied Energy, Elsevier, vol. 165(C), pages 695-706.
    4. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Song, Han Ho, 2019. "Solid oxide fuel cell operation in a solid oxide fuel cell–internal combustion engine hybrid system and the design point performance of the hybrid system," Applied Energy, Elsevier, vol. 254(C).
    5. Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
    6. Singh, Surinder P. & Ohara, Brandon & Ku, Anthony Y., 2021. "Prospects for cost-competitive integrated gasification fuel cell systems," Applied Energy, Elsevier, vol. 290(C).
    7. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    8. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    10. Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
    11. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Kim, Seonyeob & Oh, Sechul & Song, Han Ho, 2018. "Experimental study of homogeneous charge compression ignition engine operation fuelled by emulated solid oxide fuel cell anode off-gas," Applied Energy, Elsevier, vol. 229(C), pages 42-62.
    12. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    13. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Dong, Peng, 2019. "Thermodynamics analysis of a turbojet engine integrated with a fuel cell and steam injection for high-speed flight," Energy, Elsevier, vol. 185(C), pages 190-201.
    14. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    16. Ferrari, Mario L., 2015. "Advanced control approach for hybrid systems based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 145(C), pages 364-373.
    17. Steilen, Mike & Saletti, Costanza & Heddrich, Marc P. & Friedrich, K. Andreas, 2018. "Analysis of the influence of heat transfer on the stationary operation and performance of a solid oxide fuel cell/gas turbine hybrid power plant," Applied Energy, Elsevier, vol. 211(C), pages 479-491.
    18. Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
    19. Ferrari, Mario L. & Traverso, Alberto & Massardo, Aristide F., 2016. "Smart polygeneration grids: experimental performance curves of different prime movers," Applied Energy, Elsevier, vol. 162(C), pages 622-630.
    20. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.