IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7174-d1264206.html
   My bibliography  Save this article

Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition

Author

Listed:
  • Eugenio Giacomazzi

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    Current address: Casaccia Research Center, TERIN-PSU-IPSE, S.P. 081, ENEA, Via Anguillarese 301, S.M. Galeria, 00123 Rome, Italy.
    These authors contributed equally to this work.)

  • Guido Troiani

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    These authors contributed equally to this work.)

  • Antonio Di Nardo

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    These authors contributed equally to this work.)

  • Giorgio Calchetti

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    These authors contributed equally to this work.)

  • Donato Cecere

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    These authors contributed equally to this work.)

  • Giuseppe Messina

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    These authors contributed equally to this work.)

  • Simone Carpenella

    (Laboratory of Processes & Systems Engineering for Energy Decarbonisation, ENEA, Via Anguillarese 301, 00123 Rome, Italy
    These authors contributed equally to this work.)

Abstract

The aim of this article is to review hydrogen combustion applications within the energy transition framework. Hydrogen blends are also included, from the well-known hydrogen enriched natural gas (HENG) to the hydrogen and ammonia blends whose chemical kinetics is still not clearly defined. Hydrogen and hydrogen blends combustion characteristics will be firstly summarized in terms of standard properties like the laminar flame speed and the adiabatic flame temperature, but also evidencing the critical role of hydrogen preferential diffusion in burning rate enhancement and the drastic reduction in radiative emission with respect to natural gas flames. Then, combustion applications in both thermo-electric power generation (based on internal combustion engines, i.e., gas turbines and piston engines) and hard-to-abate industry (requiring high-temperature kilns and furnaces) sectors will be considered, highlighting the main issues due to hydrogen addition related to safety, pollutant emissions, and potentially negative effects on industrial products (e.g., glass, cement and ceramic).

Suggested Citation

  • Eugenio Giacomazzi & Guido Troiani & Antonio Di Nardo & Giorgio Calchetti & Donato Cecere & Giuseppe Messina & Simone Carpenella, 2023. "Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition," Energies, MDPI, vol. 16(20), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7174-:d:1264206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo S. Gomez & Kelly C. Gomes & José M. A. M. Gurgel & Laís B. Alves & Hortência L. F. Magalhães & Raíssa A. Queiroga & Gustavo C. P. Sousa & Aline S. Oliveira & Anderson F. Vilela & Bruna T. A. S, 2023. "Investigating the Drying Process of Ceramic Sanitary Ware at Low Temperature," Energies, MDPI, vol. 16(10), pages 1-20, May.
    2. Ditaranto, Mario & Heggset, Tarjei & Berstad, David, 2020. "Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of process performance," Energy, Elsevier, vol. 192(C).
    3. Prina, Matteo Giacomo & Fanali, Lorenzo & Manzolini, Giampaolo & Moser, David & Sparber, Wolfram, 2018. "Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study," Energy, Elsevier, vol. 160(C), pages 33-43.
    4. Kamil Wróbel & Justyna Wróbel & Wojciech Tokarz & Jakub Lach & Katarzyna Podsadni & Andrzej Czerwiński, 2022. "Hydrogen Internal Combustion Engine Vehicles: A Review," Energies, MDPI, vol. 15(23), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khusniddin Alikulov & Zarif Aminov & La Hoang Anh & Tran Dang Xuan & Wookyung Kim, 2024. "Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors," Energies, MDPI, vol. 17(5), pages 1-30, March.
    2. Alessandro Franco & Caterina Giovannini, 2023. "Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives," Sustainability, MDPI, vol. 15(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    2. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2023. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems," Energy, Elsevier, vol. 270(C).
    3. Francesco Gardumi & Manuel Welsch & Mark Howells & Emanuela Colombo, 2019. "Representation of Balancing Options for Variable Renewables in Long-Term Energy System Models: An Application to OSeMOSYS," Energies, MDPI, vol. 12(12), pages 1-22, June.
    4. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Glensk, Barbara & Madlener, Reinhard, 2019. "The value of enhanced flexibility of gas-fired power plants: A real options analysis," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Luis Montero & Antonio Bello & Javier Reneses, 2020. "A New Methodology to Obtain a Feasible Thermal Operation in Power Systems in a Medium-Term Horizon," Energies, MDPI, vol. 13(12), pages 1-17, June.
    7. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    8. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    9. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    10. Guohui Song & Qi Zhao & Baohua Shao & Hao Zhao & Hongyan Wang & Wenyi Tan, 2023. "Life Cycle Assessment of Greenhouse Gas (GHG) and NO x Emissions of Power-to-H 2 -to-Power Technology Integrated with Hydrogen-Fueled Gas Turbine," Energies, MDPI, vol. 16(2), pages 1-14, January.
    11. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
    13. Cameretti, Maria Cristina & Cappiello, Alessandro & De Robbio, Roberta & Tuccillo, Raffaele, 2023. "Solar-assisted micro gas turbine with humid air or steam-injected option," Energy, Elsevier, vol. 270(C).
    14. Lopez-Ruiz, G. & Alava, I. & Urresti, I. & Blanco, J.M. & Naud, B., 2021. "Experimental and numerical study of NOx formation in a domestic H2/air coaxial burner at low Reynolds number," Energy, Elsevier, vol. 221(C).
    15. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Muxi Wang & Akira Matsugi & Yoshinori Kondo & Yosuke Sakamoto & Yoshizumi Kajii, 2023. "Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct-Injection Diesel Engine," Energies, MDPI, vol. 16(11), pages 1-12, May.
    18. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    19. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7174-:d:1264206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.