IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920313830.html
   My bibliography  Save this article

Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification

Author

Listed:
  • Fózer, Dániel
  • Volanti, Mirco
  • Passarini, Fabrizio
  • Varbanov, Petar Sabev
  • Klemeš, Jiří Jaromír
  • Mizsey, Péter

Abstract

The low efficiency of renewable electricity storage has been considered as a bottleneck of the scalable and low-carbon Power-to-Gas energy transformation concept. This paper investigates the combination of CO2 biofixation using Spirulina platensis microalgae and catalytic hydrothermal gasification of wet organic feedstock for the storage of fluctuating electricity and direct utilisation of waste CO2. The presented method enables wet microalgae biomass conversion into H2 and C1-C2 rich fuel gas stream using hydrothermal conversion that is valorised further to methane. For bridging the gap between theoretical investigations and the application of this approach, experiments were carried out at elevated temperatures (632.9-717.0 °C) based on a central composite design of the experiment. Biogas upgrading was evaluated by ASPEN Plus flowsheeting software. The results show that the proposed storage cycle outperforms the state-of-the-art biological and chemical-based Sabatier methanations with an overall round-trip efficiency of 42.3%. The optimised thermo-chemical process enables to achieve simultaneously high H2 (9.05 mol kg−1) and CH4 (7.91 mol kg−1) yields with an enhanced 71.23% carbon conversion ratio. Moreover, the environmental and cost evaluations of the currently proposed bio-synthetic process indicate low associated CO2 equivalent emission (99.4 ± 12.6 g CO2,eq kWh−1) with 144.9 €MWh-1 normalised total annual natural gas production cost. Ideally the proposed storage cycle requires less H2 from external sources, effective CO2 utilisation becomes available through the biofixation and hydrothermal conversion of the wet organic feedstock and closed carbon emission cycle can be accomplished.

Suggested Citation

  • Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313830
    DOI: 10.1016/j.apenergy.2020.115923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ligang & Pérez-Fortes, Mar & Madi, Hossein & Diethelm, Stefan & herle, Jan Van & Maréchal, François, 2018. "Optimal design of solid-oxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis," Applied Energy, Elsevier, vol. 211(C), pages 1060-1079.
    2. Louis, Jean-Nicolas & Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Tran-Quoc, Tuan & Hadjsaid, Nouredine, 2018. "Environmental impact indicators for the electricity mix and network development planning towards 2050 – A POLES and EUTGRID model," Energy, Elsevier, vol. 163(C), pages 618-628.
    3. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    4. Song, Yanping & Sun, Xiaojing & Huang, Diangui, 2017. "Preliminary design and performance analysis of a centrifugal turbine for Organic Rankine Cycle (ORC) applications," Energy, Elsevier, vol. 140(P1), pages 1239-1251.
    5. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    6. Ceballos-Escalera, Alba & Molognoni, Daniele & Bosch-Jimenez, Pau & Shahparasti, Mahdi & Bouchakour, Salim & Luna, Alvaro & Guisasola, Albert & Borràs, Eduard & Della Pirriera, Monica, 2020. "Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach," Applied Energy, Elsevier, vol. 260(C).
    7. Weldekidan, Haftom & Strezov, Vladimir & Town, Graham, 2018. "Review of solar energy for biofuel extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 184-192.
    8. Zoss, Toms & Dace, Elina & Blumberga, Dagnija, 2016. "Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region," Applied Energy, Elsevier, vol. 170(C), pages 278-285.
    9. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    10. Talbot M. Andrews & Andrew W. Delton & Reuben Kline, 2018. "High-risk high-reward investments to mitigate climate change," Nature Climate Change, Nature, vol. 8(10), pages 890-894, October.
    11. Sun, Yang & Wang, Ligang & Xu, Cheng & Van herle, Jan & Maréchal, François & Yang, Yongping, 2020. "Enhancing the operational flexibility of thermal power plants by coupling high-temperature power-to-gas," Applied Energy, Elsevier, vol. 263(C).
    12. Macrì, Domenico & Catizzone, Enrico & Molino, Antonio & Migliori, Massimo, 2020. "Supercritical water gasification of biomass and agro-food residues: Energy assessment from modelling approach," Renewable Energy, Elsevier, vol. 150(C), pages 624-636.
    13. Bareschino, P. & Mancusi, E. & Urciuolo, M. & Paulillo, A. & Chirone, R. & Pepe, F., 2020. "Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    15. Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
    16. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    17. Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. de Boer, Harmen Sytze & Grond, Lukas & Moll, Henk & Benders, René, 2014. "The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels," Energy, Elsevier, vol. 72(C), pages 360-370.
    19. Schweizer, Vanessa J. & Morgan, M. Granger, 2016. "Bounding US electricity demand in 2050," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 215-223.
    20. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    21. Wang, Ligang & Rao, Megha & Diethelm, Stefan & Lin, Tzu-En & Zhang, Hanfei & Hagen, Anke & Maréchal, François & Van herle, Jan, 2019. "Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation," Applied Energy, Elsevier, vol. 250(C), pages 1432-1445.
    22. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    23. Pereira, Andrés & Sauma, Enzo, 2020. "Power systems expansion planning with time-varying CO2 tax," Energy Policy, Elsevier, vol. 144(C).
    24. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    25. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    26. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    27. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    28. Jean-Nicolas Louis & Stéphane Allard & Vincent Debusschere & Silvana Mima & Tuan Tran-Quoc & Nouredine Hadjsaid, 2018. "Environmental impact indicators for the electricity mix and network development planning towards 2050 – A POLES and EUTGRID model," Post-Print hal-01863887, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Yongsheng & Wang, Yingjie & Jiang, Cong & Wang, Xun & Hu, Zhiquan & Xiao, Bo & Liu, Shiming, 2022. "Simultaneous enhancement of the H2 yield and HCl removal efficiency from pyrolysis of infusion tube under novel mayenite-based mesoporous catalytic sorbents," Energy, Elsevier, vol. 244(PB).
    2. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    3. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Lin, Yi-Li & Zheng, Nai-Yun & Wang, Hsueh-Chien, 2022. "Sludge dewatering through H2O2 lysis and ultrasonication and recycle for energy by torrefaction to achieve zero waste: An environmental and economical friendly technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Nair, Purusothmn Nair S. Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2021. "A generic algebraic targeting approach for integration of renewable energy sources, CO2 capture and storage and negative emission technologies in carbon-constrained energy planning," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    2. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    4. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    5. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    6. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    7. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    8. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    9. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    10. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    11. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    12. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    13. Bongartz, Dominik & Doré, Larissa & Eichler, Katharina & Grube, Thomas & Heuser, Benedikt & Hombach, Laura E. & Robinius, Martin & Pischinger, Stefan & Stolten, Detlef & Walther, Grit & Mitsos, Alexan, 2018. "Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide," Applied Energy, Elsevier, vol. 231(C), pages 757-767.
    14. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    15. Qi, Meng & Lee, Jaewon & Hong, Seokyoung & Kim, Jeongdong & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing," Energy, Elsevier, vol. 256(C).
    16. Gupta, Ruchi & Rüdisüli, Martin & Patel, Martin Kumar & Parra, David, 2022. "Smart power-to-gas deployment strategies informed by spatially explicit cost and value models," Applied Energy, Elsevier, vol. 327(C).
    17. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    18. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    20. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.