IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics036054422101313x.html
   My bibliography  Save this article

Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency

Author

Listed:
  • Xuan, Qingdong
  • Li, Guiqiang
  • Yang, Honglun
  • Gao, Cai
  • Jiang, Bin
  • Liu, Xiangnong
  • Ji, Jie
  • Zhao, Xudong
  • Pei, Gang

Abstract

This paper proposes a systematic design and formation process for the asymmetric compound parabolic concentrator taking the angular acceptance range as the target function and a dielectric asymmetric compound parabolic concentrator (DACPC) that presents almost unity angular acceptance efficiency is got. Ray-tracing simulation and experimental characterization study were conducted to reveal the optical performance of the DACPC. It was found that the DACPC with the geometric concentration ratio of 2.4 increased the short-circuit current and the maximum power by 87.0% and 96.6% averagely within the incidence angels of 0°–85° as compared with the non-concentrating photovoltaic cell. Corresponding average simulation and actual optical efficiency of it are 93.3% and 77.9%. The angular acceptance efficiency is proposed to evaluate the annual performance potential and regional applicability for optical concentrators, which indicates that the angular acceptance efficiency of the DACPC can be up to 97.7% for simulation results and 94.4% for experiment results. The outdoor experiments on 25th June when the projected incidence angle lied in the range of 60°–89° for the DACPC were conducted. It was found that the DACPC can still increase the short-circuit current and maximum power of the photovoltaic cell by average factors of 57% and 76% respectively.

Suggested Citation

  • Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s036054422101313x
    DOI: 10.1016/j.energy.2021.121065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101313X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vellini, Michela & Gambini, Marco & Prattella, Valentina, 2017. "Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels," Energy, Elsevier, vol. 138(C), pages 1099-1111.
    2. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    3. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    4. Guiqiang, Li & Gang, Pei & Yuehong, Su & Jie, Ji & Riffat, Saffa B., 2013. "Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator," Energy, Elsevier, vol. 58(C), pages 398-403.
    5. Zhang, Heng & Chen, Haiping & Han, Yuchen & Liu, Haowen & Li, Mingjie, 2017. "Experimental and simulation studies on a novel compound parabolic concentrator," Renewable Energy, Elsevier, vol. 113(C), pages 784-794.
    6. Tina, G.M. & Rosa-Clot, M. & Rosa-Clot, P. & Scandura, P.F., 2012. "Optical and thermal behavior of submerged photovoltaic solar panel: SP2," Energy, Elsevier, vol. 39(1), pages 17-26.
    7. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    8. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2014. "Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications," Applied Energy, Elsevier, vol. 136(C), pages 363-372.
    9. Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
    10. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    11. He, Wei & Hong, Xiaoqiang & Zhao, Xudong & Zhang, Xingxing & Shen, Jinchun & Ji, Jie, 2015. "Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system," Applied Energy, Elsevier, vol. 146(C), pages 371-382.
    12. Zahedi, A., 2011. "Review of modelling details in relation to low-concentration solar concentrating photovoltaic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1609-1614, April.
    13. Freier Raine, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2020. "Design method of a compact static nonimaging concentrator for portable photovoltaics using parameterisation and numerical optimisation," Applied Energy, Elsevier, vol. 266(C).
    14. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    15. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    16. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    17. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas’ud, Abdullahi & Md Yunus, No, 2015. "Performance analysis of a novel rotationally asymmetrical compound parabolic concentrator," Applied Energy, Elsevier, vol. 154(C), pages 221-231.
    18. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & , 2014. "Mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems," Applied Energy, Elsevier, vol. 113(C), pages 32-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Liye & Zheng, Canyang & Shi, Kuang & Chen, Fei, 2023. "Model construction and performance research of the optimized compound parabolic concentrator based on critical truncation and multi-section congruent," Renewable Energy, Elsevier, vol. 217(C).
    2. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.
    3. Zhang, Xueyan & Jiang, Shuoxun & Lin, Ziming & Gui, Qinghua & Chen, Fei, 2023. "Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber," Energy, Elsevier, vol. 267(C).
    4. Zhang, Xueyan & Wang, Xin & Li, Zhongzhe & Luo, Huilong & Chen, Fei, 2023. "Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber," Energy, Elsevier, vol. 282(C).
    5. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Window Innovations: Enhancing Building Performance through Advanced Technologies," Energies, MDPI, vol. 17(14), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    2. Freier Raine, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2020. "Design method of a compact static nonimaging concentrator for portable photovoltaics using parameterisation and numerical optimisation," Applied Energy, Elsevier, vol. 266(C).
    3. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    4. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas'ud, Abdullahi & Md Yunus, No, 2015. "Optimisation of the performance of a novel rotationally asymmetrical optical concentrator design for building integrated photovoltaic system," Energy, Elsevier, vol. 90(P1), pages 1033-1045.
    5. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    6. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    7. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    8. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).
    9. Przemyslaw Zawadzki & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Abu Bakar Munir, 2020. "Life Cycle Assessment of a Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    10. Abdullah Alamoudi & Syed Muhammad Saaduddin & Abu Bakar Munir & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Siti Hajar Mohd Yasin & Ridoan Karim & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorg, 2019. "Using Static Concentrator Technology to Achieve Global Energy Goal," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    11. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    12. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    13. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    15. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    16. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    17. Connelly, Karen & Wu, Yupeng & Chen, Jun & Lei, Yu, 2016. "Design and development of a reflective membrane for a novel Building Integrated Concentrating Photovoltaic (BICPV) ‘Smart Window’ system," Applied Energy, Elsevier, vol. 182(C), pages 331-339.
    18. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    19. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    20. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s036054422101313x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.