IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v266y2020ics0306261920303330.html
   My bibliography  Save this article

Design method of a compact static nonimaging concentrator for portable photovoltaics using parameterisation and numerical optimisation

Author

Listed:
  • Freier Raine, Daria
  • Ramirez-Iniguez, Roberto
  • Jafry, Tahseen
  • Muhammad-Sukki, Firdaus
  • Gamio, Carlos

Abstract

Portable solar chargers are one of the technologies that can help to achieve universal access to electricity by 2030. However, the large number of solar photovoltaic devices required and their short life-span make achieving this goal a resource and energy intensive process. To reduce the embodied energy, the embodied carbon and the human and eco-toxicity potential of portable solar chargers, solar photovoltaic concentrators can be used. This paper proposes a new nonimaging solar photovoltaic concentrator design which has material efficiency, portability and off-grid use as its main feature. The main contribution of this paper is the design method of the new 3D nonimaging concentrator containing the parametric equation of the concentrator surfaces and the numeric optimisation of the design parameters. The developed optimisation program is based on genetic algorithms which parameters were determined experimentally in this paper. The concentrator design achieved with this method is 43% less material intensive than the most compact nonimaging solar concentrator available in literature. This design approach can be used to find concentrator designs with specific volumes, heights, concentration ratios, acceptance angles and optical efficiency. It is therefore a step towards more material efficient and more sustainable nonimaging concentrators as well as more sustainable portable solar photovoltaic systems.

Suggested Citation

  • Freier Raine, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2020. "Design method of a compact static nonimaging concentrator for portable photovoltaics using parameterisation and numerical optimisation," Applied Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303330
    DOI: 10.1016/j.apenergy.2020.114821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920303330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vellini, Michela & Gambini, Marco & Prattella, Valentina, 2017. "Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels," Energy, Elsevier, vol. 138(C), pages 1099-1111.
    2. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    3. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2014. "Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications," Applied Energy, Elsevier, vol. 136(C), pages 363-372.
    4. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2013. "Performance analysis of a mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems," Applied Energy, Elsevier, vol. 111(C), pages 288-299.
    5. Arias-Rosales, Andrés & Mejía-Gutiérrez, Ricardo, 2018. "Optimization of V-Trough photovoltaic concentrators through genetic algorithms with heuristics based on Weibull distributions," Applied Energy, Elsevier, vol. 212(C), pages 122-140.
    6. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    7. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas’ud, Abdullahi & Md Yunus, No, 2015. "Performance analysis of a novel rotationally asymmetrical compound parabolic concentrator," Applied Energy, Elsevier, vol. 154(C), pages 221-231.
    8. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).
    2. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    2. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    3. Abdullah Alamoudi & Syed Muhammad Saaduddin & Abu Bakar Munir & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Siti Hajar Mohd Yasin & Ridoan Karim & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorg, 2019. "Using Static Concentrator Technology to Achieve Global Energy Goal," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    4. Connelly, Karen & Wu, Yupeng & Chen, Jun & Lei, Yu, 2016. "Design and development of a reflective membrane for a novel Building Integrated Concentrating Photovoltaic (BICPV) ‘Smart Window’ system," Applied Energy, Elsevier, vol. 182(C), pages 331-339.
    5. Przemyslaw Zawadzki & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Abu Bakar Munir, 2020. "Life Cycle Assessment of a Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas'ud, Abdullahi & Bani, Nurul , 2016. "Performance analysis of a solar window incorporating a novel rotationally asymmetrical concentrator," Energy, Elsevier, vol. 99(C), pages 181-192.
    7. Zhang, Wei & Li, Jianhui & Xie, Lingzhi & Hao, Xia & Mallick, Tapas & Wu, Yupeng & Baig, Hasan & Shanks, Katie & Sun, Yanyi & Yan, Xiaoyu & Tian, Hao & Li, Zihao, 2022. "Comprehensive analysis of electrical-optical performance and application potential for 3D concentrating photovoltaic window," Renewable Energy, Elsevier, vol. 189(C), pages 369-382.
    8. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas'ud, Abdullahi & Md Yunus, No, 2015. "Optimisation of the performance of a novel rotationally asymmetrical optical concentrator design for building integrated photovoltaic system," Energy, Elsevier, vol. 90(P1), pages 1033-1045.
    9. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    10. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Freier, Daria & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abubakar Mas’ud, Abdullahi & Md Yunus, No, 2015. "Performance analysis of a novel rotationally asymmetrical compound parabolic concentrator," Applied Energy, Elsevier, vol. 154(C), pages 221-231.
    11. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    12. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    13. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    15. Wang, Gang & Yao, Yubo & Lin, Jianqing & Chen, Zeshao & Hu, Peng, 2020. "Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter," Renewable Energy, Elsevier, vol. 155(C), pages 1091-1102.
    16. Daria Freier & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Roberto Ramirez-Iniguez & Abu Bakar Munir & Siti Hajar Mohd Yasin & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey, 2018. "Annual Prediction Output of an RADTIRC-PV Module," Energies, MDPI, vol. 11(3), pages 1-20, March.
    17. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    18. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    19. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    20. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.