IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5529-d808678.html
   My bibliography  Save this article

A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors

Author

Listed:
  • Faisal Masood

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
    Department of Electrical Engineering, University of Engineering and Technology Taxila, Taxila 47080, Pakistan)

  • Nursyarizal Bin Mohd Nor

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

  • Perumal Nallagownden

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

  • Irraivan Elamvazuthi

    (Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

  • Rahman Saidur

    (Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia)

  • Mohammad Azad Alam

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

  • Javed Akhter

    (Department of Mechanical Engineering, University of Engineering and Technology Taxila, Taxila 47080, Pakistan)

  • Mohammad Yusuf

    (Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

  • Mubbashar Mehmood

    (School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Mujahid Ali

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

Abstract

The concentrating photovoltaic/thermal (PVT) collectors offer the benefits of the reduced per-unit price of electrical energy and co-generation of electrical and thermal energies by intensifying the solar irradiation falling on the hybrid receiving plane. The compound parabolic concentrating (CPC) collectors have appeared as a promising candidate for numerous applications in the field of solar energy due to their ability to collect both direct and diffuse solar radiation and suitability for stationary installation. Over the last few decades, various configurations of CPC collectors have been proposed and investigated by different researchers for the simultaneous generation of electrical and thermal energies. This article presents a comprehensive review of historical and recent developments and applications of CPC-based hybrid PVT systems. The review focuses on the heat extraction mechanisms and commonly used application areas of CPC-PVT systems. The innovative design configurations proposed by different researchers have been reviewed in detail. The outputs of CPC-PVT systems are generally found to be superior to their counterparts without CPCs, which justifies their increased popularity. Due to dual outputs, the hybrid CPC-PVT systems are considered to be suitable for rooftop and building façade integrated applications. Finally, future recommendations have been enlisted, highlighting the potential research opportunities and challenges for the prospective researchers working in the field of concentrating solar PVT systems.

Suggested Citation

  • Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5529-:d:808678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    2. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    4. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    5. Faisal Masood & Perumal Nallagownden & Irraivan Elamvazuthi & Javed Akhter & Mohammad Azad Alam, 2021. "A New Approach for Design Optimization and Parametric Analysis of Symmetric Compound Parabolic Concentrator for Photovoltaic Applications," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    6. Singh, A.K. & Singh, R.G. & Tiwari, G.N., 2020. "Thermal and electrical performance evaluation of photo-voltaic thermal compound parabolic concentrator integrated fixed dome biogas plant," Renewable Energy, Elsevier, vol. 154(C), pages 614-624.
    7. Tiwari, Deepak & Sherwani, Ahmad Faizan & Atheaya, Deepali & Kumar, Anil & Kumar, Nishant, 2020. "Thermodynamic analysis of Organic Rankine cycle driven by reversed absorber hybrid photovoltaic thermal compound parabolic concentrator system," Renewable Energy, Elsevier, vol. 147(P1), pages 2118-2127.
    8. El-Samie, Mostafa M. Abd & Ju, Xing & Zhang, Zheyang & Adam, Saadelnour Abdueljabbar & Pan, Xinyu & Xu, Chao, 2020. "Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system," Energy, Elsevier, vol. 190(C).
    9. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    10. Zhang, Gaoming & Wei, Jinjia & Wang, Zexin & Xie, Huling & Xi, Yonghao & Khalid, Muhammad, 2019. "Investigation into effects of non-uniform irradiance and photovoltaic temperature on performances of photovoltaic/thermal systems coupled with truncated compound parabolic concentrators," Applied Energy, Elsevier, vol. 250(C), pages 245-256.
    11. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    12. Kai, Liang & Heng, Zhang & Haiping, Chen & Jiguang, Huang & Xinxin, Guo, 2020. "The comparison study between different battery and channel of the LCPV/T systems under concentration ratio 4," Energy, Elsevier, vol. 191(C).
    13. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    14. Hj. Othman, Mohd. Yusof & Yatim, Baharudin & Sopian, Kamaruzzaman & Abu Bakar, Mohd. Nazari, 2005. "Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins," Renewable Energy, Elsevier, vol. 30(13), pages 2005-2017.
    15. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    16. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    17. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    18. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    19. Pouriya Nasseriyan & Hossein Afzali Gorouh & João Gomes & Diogo Cabral & Mazyar Salmanzadeh & Tiffany Lehmann & Abolfazl Hayati, 2020. "Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector," Energies, MDPI, vol. 13(7), pages 1-21, April.
    20. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    21. Michael, Jee Joe & Iqbal, S. Mohamed & Iniyan, S. & Goic, Ranko, 2018. "Enhanced electrical performance in a solar photovoltaic module using V-trough concentrators," Energy, Elsevier, vol. 148(C), pages 605-613.
    22. Chemisana, Daniel, 2011. "Building Integrated Concentrating Photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 603-611, January.
    23. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    24. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    25. Guerrero-Lemus, R. & Vega, R. & Kim, Taehyeon & Kimm, Amy & Shephard, L.E., 2016. "Bifacial solar photovoltaics – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1533-1549.
    26. Li, W. & Paul, M.C. & Baig, H. & Siviter, J. & Montecucco, A. & Mallick, T.K. & Knox, A.R., 2019. "A three-point-based electrical model and its application in a photovoltaic thermal hybrid roof-top system with crossed compound parabolic concentrator," Renewable Energy, Elsevier, vol. 130(C), pages 400-415.
    27. Koronaki, I.P. & Nitsas, M.T., 2018. "Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid solar collectors connected in series," Renewable Energy, Elsevier, vol. 118(C), pages 654-672.
    28. Meraj, Md & Mahmood, S.M. & Khan, M.E. & Azhar, Md & Tiwari, G.N., 2021. "Effect of N-Photovoltaic thermal integrated parabolic concentrator on milk temperature for pasteurization: A simulation study," Renewable Energy, Elsevier, vol. 163(C), pages 2153-2164.
    29. Atheaya, Deepali & Tiwari, Arvind & Tiwari, G.N. & Al-Helal, I.M., 2016. "Performance evaluation of inverted absorber photovoltaic thermal compound parabolic concentrator (PVT-CPC): Constant flow rate mode," Applied Energy, Elsevier, vol. 167(C), pages 70-79.
    30. Francesco Calise & Laura Vanoli, 2012. "Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model," Energies, MDPI, vol. 5(10), pages 1-23, October.
    31. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    32. Chen, Yuzhu & Wang, Jiangjiang & Ma, Chaofan & Gao, Yuefen, 2019. "Thermo-ecological cost assessment and optimization for a hybrid combined cooling, heating and power system coupled with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 176(C), pages 479-492.
    33. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    34. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    35. Baig, Hasan & Siviter, J. & Li, W. & Paul, M.C. & Montecucco, A. & Rolley, M.H. & Sweet, T.K.N. & Gao, M. & Mullen, P.A. & Fernandez, E.F. & Han, G. & Gregory, D.H. & Knox, A.R. & Mallick, Tapas, 2018. "Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy," Energy, Elsevier, vol. 147(C), pages 547-560.
    36. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    37. Chandan, & Dey, Sumon & Iqbal, S.Md. & Reddy, K.S. & Pesala, Bala, 2021. "Numerical modeling and performance assessment of elongated compound parabolic concentrator based LCPVT system," Renewable Energy, Elsevier, vol. 167(C), pages 199-216.
    38. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Baig, H. & Fernandez, E.F. & Mallick, T.K. & Montecucco, A. & Siviter, J. & Knox, A.R. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems," Renewable Energy, Elsevier, vol. 112(C), pages 166-186.
    39. Muhammad Adil Khan & Byeonghun Ko & Esebi Alois Nyari & S. Eugene Park & Hee-Je Kim, 2017. "Performance Evaluation of Photovoltaic Solar System with Different Cooling Methods and a Bi-Reflector PV System (BRPVS): An Experimental Study and Comparative Analysis," Energies, MDPI, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pankaj Kumar & Krishna Kumar Sinha & Bojan Đurin & Mukesh Kumar Gupta & Nishant Saxena & Malay Kumar Banerjee & Nikola Kranjčić & Suraj Kumar Singh & Shruti Kanga, 2022. "Economics of Implementing Solar Thermal Heating Systems in the Textile Industry," Energies, MDPI, vol. 15(12), pages 1-21, June.
    2. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    3. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    4. Kexin Zhang & Ying Su & Haiyu Wang & Qian Wang & Kai Wang & Yisen Niu & Jifeng Song, 2022. "Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method," Sustainability, MDPI, vol. 14(17), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    4. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    5. Chandan, & Dey, Sumon & Iqbal, S.Md. & Reddy, K.S. & Pesala, Bala, 2021. "Numerical modeling and performance assessment of elongated compound parabolic concentrator based LCPVT system," Renewable Energy, Elsevier, vol. 167(C), pages 199-216.
    6. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    7. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    8. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    9. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    10. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    11. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    12. El-Samie, Mostafa M. Abd & Ju, Xing & Zhang, Zheyang & Adam, Saadelnour Abdueljabbar & Pan, Xinyu & Xu, Chao, 2020. "Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system," Energy, Elsevier, vol. 190(C).
    13. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    14. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Parthiban, Anandhi & Baig, Hasan & Mallick, T.K. & Reddy, K.S., 2022. "Performance investigation of SUNTRAP module for different locations: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 199(C), pages 140-156.
    16. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    18. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    19. Moreno, A. & Chemisana, D. & Fernández, E.F., 2021. "Hybrid high-concentration photovoltaic-thermal solar systems for building applications," Applied Energy, Elsevier, vol. 304(C).
    20. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5529-:d:808678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.