IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v123y2018icp767-780.html
   My bibliography  Save this article

AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars

Author

Listed:
  • Ulloa, Carlos
  • Nuñez, José M.
  • Lin, Chengxian
  • Rey, Guillermo

Abstract

The use of renewable energy is spreading also to the military field. Its implementation in army forward bases has three clear advantages: an economic benefit lowering consumptions, an environmental profit reducing emissions, and a strategic interest minimizing risks in supplies. This paper presents a methodology for the design of a photovoltaic-thermal system (PV-T) to supply heat and electricity to military tents in forward facilities. UAV shelter hangars used by infantry forces have been chosen to implement this equipment. Analytic Hierarchy Process (AHP) has been chosen to explain its application to designing the PV-T system. A CFD analysis of different design alternatives was performed in order to quantify decision making criteria and subcriteria. The best performance design was used to build a test bench of the system, using an Arduino-based platform. Telemetry is used to remotely register PV-T module parameters. Experimental data obtained was implemented as boundary conditions to validate the CFD model of the PV-T system, and heat exchange models were implemented using UDF (user defined functions) in ANSYS® FLUENT®. A making decision method was successfully applied to define a methodology for geometrical design, using CFD simulation to determine necessary parameters to quantify criteria and subcriteria defined in the AHP.

Suggested Citation

  • Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
  • Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:767-780
    DOI: 10.1016/j.renene.2018.02.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811830243X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 36-51.
    2. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    3. Horvath, Christopher & Hwang, Yunho & Radermacher, Reinhard & Gerstler, William & Tang, Ching-Jen, 2014. "Waste heat and electrically driven hybrid cooling systems for a high ambient temperature, off-grid application," Energy, Elsevier, vol. 66(C), pages 711-721.
    4. Hj. Othman, Mohd. Yusof & Yatim, Baharudin & Sopian, Kamaruzzaman & Abu Bakar, Mohd. Nazari, 2005. "Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins," Renewable Energy, Elsevier, vol. 30(13), pages 2005-2017.
    5. Higier, Andrew & Arbide, Adrian & Awaad, Amer & Eiroa, Justo & Miller, Jerry & Munroe, Norman & Ravinet, Alfredo & Redding, Brian, 2013. "Design, development and deployment of a hybrid renewable energy powered mobile medical clinic with automated modular control system," Renewable Energy, Elsevier, vol. 50(C), pages 847-857.
    6. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    7. Sagbansua, Lutfu & Balo, Figen, 2017. "Decision making model development in increasing wind farm energy efficiency," Renewable Energy, Elsevier, vol. 109(C), pages 354-362.
    8. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    9. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    10. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    11. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
    12. Gaur, Ankita & Tiwari, G.N., 2015. "Analytical expressions for temperature dependent electrical efficiencies of thin film BIOPVT systems," Applied Energy, Elsevier, vol. 146(C), pages 442-452.
    13. Abdul Hamid, Suhaila & Yusof Othman, Mohd & Sopian, Kamaruzzaman & Zaidi, Saleem H., 2014. "An overview of photovoltaic thermal combination (PV/T combi) technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 212-222.
    14. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    15. Vats, Kanchan & Tiwari, G.N., 2012. "Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system," Applied Energy, Elsevier, vol. 96(C), pages 409-416.
    16. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    17. Solanki, S.C. & Dubey, Swapnil & Tiwari, Arvind, 2009. "Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors," Applied Energy, Elsevier, vol. 86(11), pages 2421-2428, November.
    18. Claros-Marfil, Luis J. & Padial, J. Francisco & Lauret, Benito, 2016. "A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing," Renewable Energy, Elsevier, vol. 92(C), pages 450-461.
    19. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    20. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    21. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    22. Belton, Valerie & Gear, Tony, 1983. "On a short-coming of Saaty's method of analytic hierarchies," Omega, Elsevier, vol. 11(3), pages 228-230.
    23. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hachicha, Ahmed Amine & Abo-Zahhad, Essam M. & Said, Zafar & Rahman, S.M.A., 2022. "Numerical and experimental investigations of the electrical and thermal performances of a novel PV thermal system," Renewable Energy, Elsevier, vol. 195(C), pages 990-1000.
    2. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    3. Pan, Z.F. & An, L. & Wen, C.Y., 2019. "Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 240(C), pages 473-485.
    4. Pedro Orgeira-Crespo & Carlos Ulloa & José M. Núñez & José A. Pérez, 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars," Energies, MDPI, vol. 13(11), pages 1-15, June.
    5. Salvia, Amanda Lange & Brandli, Luciana Londero & Leal Filho, Walter & Locatelli Kalil, Rosa Maria, 2019. "An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities," Energy Policy, Elsevier, vol. 132(C), pages 854-864.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Pedro Orgeira-Crespo & Carlos Ulloa & José M. Núñez & José A. Pérez, 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars," Energies, MDPI, vol. 13(11), pages 1-15, June.
    3. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    4. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    5. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    6. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    7. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    8. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    9. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    10. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    11. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    12. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    13. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    15. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    16. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    17. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    18. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    19. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    20. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.

    More about this item

    Keywords

    PV-T; AHP; CFD; UDF; Decision making; Design; UAV;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:123:y:2018:i:c:p:767-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.