IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp711-721.html
   My bibliography  Save this article

Waste heat and electrically driven hybrid cooling systems for a high ambient temperature, off-grid application

Author

Listed:
  • Horvath, Christopher
  • Hwang, Yunho
  • Radermacher, Reinhard
  • Gerstler, William
  • Tang, Ching-Jen

Abstract

Forward army bases at high ambient temperature off-grid locations require both power and cooling capacity to function properly. Due to the inefficient existing configuration to meet these demands, there are safety and stability issues as each liter of fuel consumed for electrical power must first pass through a complex, hostile network. In place of the conventional configuration composed of a Genset (electrical generator set) and an electrically powered VCS (vapor compression system), utilizing a smaller Genset with a waste heat driven LiBr/H2O (lithium bromide/water) AS (absorption system) provides a more efficient CHP (combined heat and power) configuration. With design criteria of ambient temperatures up to 51.7 °C, providing up to 3 kW of non-cooling electricity, and 5.3 kW of cooling, these two configurations were simulated in both steady-state and transient conditions. Additionally, the proposed AS's avoid crystallization and have air-cooled heat exchangers unlike conventional AS's which crystallize at high ambient temperatures and have bulky cooling towers. In the transient simulation for the hottest week, results showed a fuel savings of 34–37% with the CHP configuration.

Suggested Citation

  • Horvath, Christopher & Hwang, Yunho & Radermacher, Reinhard & Gerstler, William & Tang, Ching-Jen, 2014. "Waste heat and electrically driven hybrid cooling systems for a high ambient temperature, off-grid application," Energy, Elsevier, vol. 66(C), pages 711-721.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:711-721
    DOI: 10.1016/j.energy.2013.11.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010281
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Fu & Yi, Jiang, 2000. "Optimal operation of a CHP plant for space heating as a peak load regulating plant," Energy, Elsevier, vol. 25(3), pages 283-298.
    2. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    3. Danestig, Maria & Gebremehdin, Alemayehu & Karlsson, Bjorn, 2007. "Stockholm CHP potential--An opportunity for CO2 reductions?," Energy Policy, Elsevier, vol. 35(9), pages 4650-4660, September.
    4. Morandin, Matteo & Toffolo, Andrea & Lazzaretto, Andrea & Maréchal, François & Ensinas, Adriano V. & Nebra, Silvia A., 2011. "Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system," Energy, Elsevier, vol. 36(6), pages 3675-3690.
    5. Compernolle, Tine & Witters, Nele & Van Passel, Steven & Thewys, Theo, 2011. "Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions," Energy, Elsevier, vol. 36(4), pages 1940-1947.
    6. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    7. Zhao, X.L. & Fu, L. & Zhang, S.G. & Jiang, Y. & Li, H., 2010. "Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system," Energy, Elsevier, vol. 35(4), pages 1848-1853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Tao & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2016. "Modeling of waste heat powered energy system for container ships," Energy, Elsevier, vol. 106(C), pages 408-421.
    2. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    3. Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, Open Access Journal, vol. 9(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:711-721. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.