IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp535-553.html
   My bibliography  Save this article

Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator

Author

Listed:
  • Afzali Gorouh, Hossein
  • Salmanzadeh, Mazyar
  • Nasseriyan, Pouriya
  • Hayati, Abolfazl
  • Cabral, Diogo
  • Gomes, João
  • Karlsson, Björn

Abstract

In the present study, a zero-dimensional thermal model has been developed to analyze a novel low concentration photovoltaic-thermal (CPVT) collector. The model has been developed by driving heat transfer and energy balance equations for each part of the collector and then solving all the equations simultaneously. Moreover, a Monte-Carlo ray-tracing software has been used for optical stimulations of the parabolic trough solar collector. The novel CPVT collector has been experimentally tested at Gävle University (Sweden) and the model has been validated against the experimental results. The primary energy saving equivalent to the thermal-electrical power cogeneration of the CPVT collector has been determined. The effect of glass cover removal, heat transfer fluid (HTF) inlet temperature and mass flow rate on the collector performance has been investigated. The optimum HTF mass flow rates of the collector for maximum electrical yield and overall primary energy saving were determined under specified operating conditions by considering the pump consumption. The effect of mean fluid temperature on the thermal and electrical efficiencies has been studied and the characteristic equation of the thermal efficiency has been obtained. The thermal and electrical peak efficiencies of the collector have been found to be 69.6% and 6.1%, respectively.

Suggested Citation

  • Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:535-553
    DOI: 10.1016/j.renene.2021.09.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaidarah, Haitham M. & Tanweer, Bilal & Gandhidasan, P. & Ibrahim, Nasiru & Rehman, Shafiqur, 2014. "Experimental and numerical study on non-concentrating and symmetric unglazed compound parabolic photovoltaic concentration systems," Applied Energy, Elsevier, vol. 136(C), pages 527-536.
    2. Calise, Francesco & Palombo, Adolfo & Vanoli, Laura, 2012. "A finite-volume model of a parabolic trough photovoltaic/thermal collector: Energetic and exergetic analyses," Energy, Elsevier, vol. 46(1), pages 283-294.
    3. Pouriya Nasseriyan & Hossein Afzali Gorouh & João Gomes & Diogo Cabral & Mazyar Salmanzadeh & Tiffany Lehmann & Abolfazl Hayati, 2020. "Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector," Energies, MDPI, vol. 13(7), pages 1-21, April.
    4. Koronaki, I.P. & Nitsas, M.T., 2018. "Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid solar collectors connected in series," Renewable Energy, Elsevier, vol. 118(C), pages 654-672.
    5. Zhang, Heng & Liang, Kai & Chen, Haiping & Gao, Dan & Guo, Xinxin, 2019. "Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study," Energy, Elsevier, vol. 177(C), pages 66-76.
    6. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guanru & Hua, Qingsong & Sun, Li & Khosravi, Ali & Jose Garcia Pabon, Juan, 2023. "Thermodynamic modeling and optimization of hybrid linear concentrating photovoltaic and mechanically pumped two-phase loop system," Applied Energy, Elsevier, vol. 333(C).
    2. Taher Maatallah & Ahlem Houcine & Farooq Saeed & Sikandar Khan & Sajid Ali, 2024. "Simulated Performance Analysis of a Hybrid Water-Cooled Photovoltaic/Parabolic Dish Concentrator Coupled with Conical Cavity Receiver," Sustainability, MDPI, vol. 16(2), pages 1-25, January.
    3. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    4. Dimitrios N. Korres & Theodoros Papingiotis & Irene Koronaki & Christos Tzivanidis, 2023. "Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    5. Eduardo Venegas-Reyes & Naghelli Ortega-Avila & Manuel I. Peña-Cruz & Omar J. García-Ortiz & Norma A. Rodríguez-Muñoz, 2021. "A Linear Hybrid Concentrated Photovoltaic Solar Collector: A Methodology Proposal of Optical and Thermal Analysis," Energies, MDPI, vol. 14(23), pages 1-17, December.
    6. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    7. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    8. Gülşah Karaca Dolgun & Onur Vahip Güler & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Experimental Investigation of a Concentrating Bifacial Photovoltaic/Thermal Heat Pump System with a Triangular Trough," Energies, MDPI, vol. 16(2), pages 1-20, January.
    9. Barthwal, Mohit & Rakshit, Dibakar, 2023. "A solar spectral splitting-based PVT collector with packed transparent tube receiver for co-generation of heat and electricity," Applied Energy, Elsevier, vol. 352(C).
    10. Cabral, Diogo, 2022. "Development and performance comparison of a modified glazed CPC hybrid solar collector coupled with a bifacial PVT receiver," Applied Energy, Elsevier, vol. 325(C).
    11. Khalaf, Arkan Elttayef & Eleiwi, Muhammad Asmail & Yassen, Tadahmun A., 2023. "Enhancing the overall performance of the hybrid solar photovoltaic collector by open water cycle jet-cooling," Renewable Energy, Elsevier, vol. 208(C), pages 492-503.
    12. Noorbakhsh, Hosein & Khoshgoftar Manesh, Mohamad Hasan & Amidpour, Majid, 2023. "Evaluation of an innovative polygeneration system based on integration of gasification process with a thermo electric generator- solid oxide fuel cell - Adsorption desalination system - Thermal photov," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    2. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    3. Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
    4. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    5. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2022. "Hybridization of a parabolic trough-based thermal plant for industrial heat and power generation," Renewable Energy, Elsevier, vol. 191(C), pages 961-973.
    6. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Kong, Xiangfei & Zhang, Lanlan & Li, Han & Wang, Yongzhen & Fan, Man, 2022. "Effect of solar energy concentrating and phase change cooling on energy and exergy performance improvement of photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 197(C), pages 1251-1263.
    8. Atheaya, Deepali & Tiwari, Arvind & Tiwari, G.N. & Al-Helal, I.M., 2016. "Performance evaluation of inverted absorber photovoltaic thermal compound parabolic concentrator (PVT-CPC): Constant flow rate mode," Applied Energy, Elsevier, vol. 167(C), pages 70-79.
    9. Dimitrios N. Korres & Theodoros Papingiotis & Irene Koronaki & Christos Tzivanidis, 2023. "Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    10. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    11. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    12. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    13. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    14. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    15. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    16. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    18. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    19. Hu, Jianhui & Chen, Wujun & Yang, Deqing & Zhao, Bing & Song, Hao & Ge, Binbin, 2016. "Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days," Applied Energy, Elsevier, vol. 173(C), pages 40-51.
    20. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:535-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.