IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p544-d1315333.html
   My bibliography  Save this article

Simulated Performance Analysis of a Hybrid Water-Cooled Photovoltaic/Parabolic Dish Concentrator Coupled with Conical Cavity Receiver

Author

Listed:
  • Taher Maatallah

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Ahlem Houcine

    (Energy and Thermal Systems Laboratory, National Engineering School of Monastir, University of Monastir, Ibn El Jazzar Street, Monastir 5019, Tunisia)

  • Farooq Saeed

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

  • Sikandar Khan

    (Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Sajid Ali

    (Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia)

Abstract

The present research discloses a novel hybrid water-cooled Photovoltaic/Parabolic Dish Concentrator coupled with conical cavity receiver and spectral beam splitter (PV/PDC-CCR-BSF). In effect, a compact co-generating solar-concentrating PV system involving a subsequent optical interface has been fully developed and numerically tested. The optical performance of the proposed hybrid solar-concentrating system was modeled and assessed using the RT 3D-4R method while the thermal yield of the system was examined using the Finite Element Method. In addition to that, different configurations of serpentine-shape embedded water-cooling pipes (rectangle, semicircle, semi-ellipse and triangle) have been tested and optimized for maximum heat collection and minimum operating cell temperature. The performance of all the tested serpentine-shape embedded water-cooling pipes was evaluated with respect to conventional serpentine-shape water-cooling pipes. The outcomes indicated that the triangular cross-section outperforms other shapes in terms of heat dissipation capabilities, with about −446 W and maximum useful thermal power in the medium of the heat transfer fluid of 11.834 kW.

Suggested Citation

  • Taher Maatallah & Ahlem Houcine & Farooq Saeed & Sikandar Khan & Sajid Ali, 2024. "Simulated Performance Analysis of a Hybrid Water-Cooled Photovoltaic/Parabolic Dish Concentrator Coupled with Conical Cavity Receiver," Sustainability, MDPI, vol. 16(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:544-:d:1315333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Sha & Xu, Guoqiang & Luo, Xiang & Quan, Yongkai & Ge, Yunting, 2016. "Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver," Energy, Elsevier, vol. 113(C), pages 95-107.
    2. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    3. Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
    4. Koronaki, I.P. & Nitsas, M.T., 2018. "Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid solar collectors connected in series," Renewable Energy, Elsevier, vol. 118(C), pages 654-672.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    2. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    3. Dimitrios N. Korres & Theodoros Papingiotis & Irene Koronaki & Christos Tzivanidis, 2023. "Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    4. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    5. Yan, Jian & Peng, You-duo & Cheng, Zi-ran, 2018. "Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system," Renewable Energy, Elsevier, vol. 129(PA), pages 431-445.
    6. Liu, Fanmao & Wu, Ke & Rao, Zaixing & Peng, Youduo, 2019. "Spatial layouts and absorbing surface design of heater tube arrays of direct-illumination receiver used in high power dish/stirling system," Energy, Elsevier, vol. 188(C).
    7. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    8. Haiting Liu & Jiewen Deng & Yue Guan & Liwei Wang, 2022. "Study of Heat Flux Density of Dish Solar Cavity Heat Absorber," Energies, MDPI, vol. 15(21), pages 1-12, October.
    9. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    10. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    11. Noorbakhsh, Hosein & Khoshgoftar Manesh, Mohamad Hasan & Amidpour, Majid, 2023. "Evaluation of an innovative polygeneration system based on integration of gasification process with a thermo electric generator- solid oxide fuel cell - Adsorption desalination system - Thermal photov," Energy, Elsevier, vol. 282(C).
    12. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    13. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    14. Yan, Jian & Liu, Yong-xiang & Peng, You-Duo, 2022. "Study on the optical performance of novel dish solar concentrator formed by rotating array of plane mirrors with the same size," Renewable Energy, Elsevier, vol. 195(C), pages 416-430.
    15. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    16. Talha Batuhan Korkut & Aytaç Gören & Ahmed Rachid, 2022. "Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions," Energies, MDPI, vol. 15(18), pages 1-14, September.
    17. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    18. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    19. Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
    20. Sun, Lulening & Zong, Chenggang & Yu, Liang & Huang, Weidong, 2019. "Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish," Energy, Elsevier, vol. 180(C), pages 192-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:544-:d:1315333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.