IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5798-d440584.html
   My bibliography  Save this article

The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine

Author

Listed:
  • Ji-Qiang Li

    (Department of Mechanical Engineering, Graduate School, Hoseo University, Asan 31499, Korea)

  • Jeong-Tae Kwon

    (Division of Mechanical and Automotive Engineering, Hoseo University, Asan 31499, Korea)

  • Seon-Jun Jang

    (Division of Mechanical and Automotive Engineering, Hoseo University, Asan 31499, Korea)

Abstract

The technique of solar dish and Stirling engine combination is the most challenging and promising one. For the efficient conversion of the externally concentrated heat to the usable power, we studied the influences of the wall temperature, inclination angle, and open area ratio of the receiver on the Stirling engine power and efficiency. The theoretical analysis of the heat exchange element of the solar Stirling engine was performed, and the simulation model of the cavity absorber was built and analyzed. The temperature cloud and heat loss trends of the receiver under different wall temperatures, inclination angles, and opening ratios were illustrated. When the wall temperature of the absorber changes from 700 to 1000 K, the efficiency of the engine has increased by 8.8% from 21.34% to 30.11%. The higher the temperature, the higher the efficiency. As the inclination angle of the absorber increases from 0° to 60°, the efficiency of the engine is increased by 7.7% from 21.1% to 28.8%. With the increases of the aperture ratio, the engine output and efficiency reduced. The engine efficiency at the aperture ratio of 0.5 is 4% larger than that at the aperture ratio of 1.

Suggested Citation

  • Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5798-:d:440584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
    2. Li, Sha & Xu, Guoqiang & Luo, Xiang & Quan, Yongkai & Ge, Yunting, 2016. "Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver," Energy, Elsevier, vol. 113(C), pages 95-107.
    3. Wu, Shuang-Ying & Xiao, Lan & Cao, Yiding & Li, You-Rong, 2010. "A parabolic dish/AMTEC solar thermal power system and its performance evaluation," Applied Energy, Elsevier, vol. 87(2), pages 452-462, February.
    4. Natarajan, Sendhil Kumar & Reddy, K.S. & Mallick, Tapas Kumar, 2012. "Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system," Applied Energy, Elsevier, vol. 93(C), pages 523-531.
    5. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    6. Zhu, Shunmin & Yu, Guoyao & Ma, Ying & Cheng, Yangbin & Wang, Yalei & Yu, Shaofei & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2019. "A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy," Applied Energy, Elsevier, vol. 242(C), pages 1248-1258.
    7. Reddy, K.S. & Natarajan, Sendhil Kumar & Veershetty, G., 2015. "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator," Renewable Energy, Elsevier, vol. 74(C), pages 148-157.
    8. Hafez, A.Z. & Soliman, Ahmed & El-Metwally, K.A. & Ismail, I.M., 2017. "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1019-1036.
    9. Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
    10. Ruelas, José & Velázquez, Nicolás & Cerezo, Jesús, 2013. "A mathematical model to develop a Scheffler-type solar concentrator coupled with a Stirling engine," Applied Energy, Elsevier, vol. 101(C), pages 253-260.
    11. Neber, Matthew & Lee, Hohyun, 2012. "Design of a high temperature cavity receiver for residential scale concentrated solar power," Energy, Elsevier, vol. 47(1), pages 481-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji-Qiang Li & Ji-Chao Li & Kyoungwoo Park & Seon-Jun Jang & Jeong-Tae Kwon, 2021. "An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Margherita Perrero & Davide Papurello, 2023. "Solar Disc Concentrator: Material Selection for the Receiver," Energies, MDPI, vol. 16(19), pages 1-11, September.
    3. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Piotr Kuryło & Filip Mikołajczyk & Krystian Kurowski & Sławomir Pochwała & Andrzej Obraniak & Jacek Stelmach & Grzegorz Wielgosiński & Justyna Czerwińska , 2021. "Analysis and Evaluation of Heat Pipe Efficiency to Reduce Low Emission with the Use of Working Agents R134A, R404A and R407C, R410A," Energies, MDPI, vol. 14(7), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).
    2. Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
    3. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    4. Lai, Xiaotian & Yu, Minjie & Long, Rui & Liu, Zhichun & Liu, Wei, 2019. "Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model," Energy, Elsevier, vol. 183(C), pages 573-583.
    5. Azzouzi, Djelloul & Boumeddane, Boussad & Abene, Abderahmane, 2017. "Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish," Renewable Energy, Elsevier, vol. 106(C), pages 111-121.
    6. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    7. Al-Nimr, Moh'd & Khashan, Saud A. & Al-Oqla, Hashem, 2023. "Novel techniques to enhance the performance of Stirling engines integrated with solar systems," Renewable Energy, Elsevier, vol. 202(C), pages 894-906.
    8. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    9. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    10. Sun, Lulening & Zong, Chenggang & Yu, Liang & Huang, Weidong, 2019. "Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish," Energy, Elsevier, vol. 180(C), pages 192-205.
    11. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    12. Peng, Wanli & Gonzalez-Ayala, Julian & Su, Guozhen & Chen, Jincan & Hernández, Antonio Calvo, 2021. "Solar-driven sodium thermal electrochemical converter coupled to a Brayton heat engine: Parametric optimization," Renewable Energy, Elsevier, vol. 164(C), pages 260-271.
    13. Zou, Chongzhe & Zhang, Yanping & Falcoz, Quentin & Neveu, Pierre & Zhang, Cheng & Shu, Weicheng & Huang, Shuhong, 2017. "Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system," Renewable Energy, Elsevier, vol. 103(C), pages 478-489.
    14. Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
    15. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    16. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Optical performance evaluation of a large solar dish/Stirling power generation system under self-weight load based on optical-mechanical integration method," Energy, Elsevier, vol. 264(C).
    17. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
    18. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    19. Peng, Wanli & Li, Wangyang & Chen, Xiaohang & Su, Guozhen & Chen, Jincan, 2019. "Optimum operation states and parametric selection criteria of an updated solar-driven AMTEC," Renewable Energy, Elsevier, vol. 141(C), pages 209-216.
    20. Garrido, Jorge & Aichmayer, Lukas & Abou-Taouk, Abdallah & Laumert, Björn, 2019. "Experimental and numerical performance analyses of Dish-Stirling cavity receivers: Radiative property study and design," Energy, Elsevier, vol. 169(C), pages 478-488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5798-:d:440584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.