IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp573-583.html
   My bibliography  Save this article

Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model

Author

Listed:
  • Lai, Xiaotian
  • Yu, Minjie
  • Long, Rui
  • Liu, Zhichun
  • Liu, Wei

Abstract

A modified theoretical model of dish solar Stirling engine was developed based on a Stirling cycle operating with finite shaft rotating speed and the energy balance equations at hot and cold ends. The convergence of solar receiver temperature and charged gas heat releasing temperature represent the stabilization of solar receiver and Stirling engine respectively, thus, to guarantee a steady operation of the overall system. Impacts of meteorological condition, operational parameter of Stirling engine on system performance were investigated and analyzed systematically. Results indicate that higher solar flux intensity improves system performance while wind deteriorates the system performance. With the input solar energy specified, optimal charged gas mass in Stirling engine exists corresponding to the maximal power output. More effective heater, regenerator and cooler contribute to better optimal system performance. Meanwhile, the charged gas mass optimized under the daily average solar flux intensity achieves the maximal mechanical work in a day with less computation. The maximal theoretical peak power output of 25 kW and overall efficiency of 44% are obtained as high performance heat exchangers are adopted and charged gas mass is optimized.

Suggested Citation

  • Lai, Xiaotian & Yu, Minjie & Long, Rui & Liu, Zhichun & Liu, Wei, 2019. "Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model," Energy, Elsevier, vol. 183(C), pages 573-583.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:573-583
    DOI: 10.1016/j.energy.2019.06.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a solar-powered solid state heat engine for electricity generation," Energy, Elsevier, vol. 93(P1), pages 165-172.
    3. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    4. Hafez, A.Z. & Soliman, Ahmed & El-Metwally, K.A. & Ismail, I.M., 2017. "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1019-1036.
    5. Blank, David A. & Wu, Chih, 1995. "Power optimization of an extra-terrestrial, solar-radiant stirling heat engine," Energy, Elsevier, vol. 20(6), pages 523-530.
    6. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization," Energy, Elsevier, vol. 158(C), pages 427-436.
    7. Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
    8. Qiu, Yu & Li, Ming-Jia & Wang, Wen-Qi & Du, Bao-Cun & Wang, Kun, 2018. "An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power," Energy, Elsevier, vol. 156(C), pages 63-72.
    9. Luo, Huilong & Wang, Ruzhu & Dai, Yanjun, 2010. "The effects of operation parameter on the performance of a solar-powered adsorption chiller," Applied Energy, Elsevier, vol. 87(10), pages 3018-3022, October.
    10. Schiro, Fabio & Benato, Alberto & Stoppato, Anna & Destro, Nicola, 2017. "Improving photovoltaics efficiency by water cooling: Modelling and experimental approach," Energy, Elsevier, vol. 137(C), pages 798-810.
    11. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
    12. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    13. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    2. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    3. Al-Nimr, Moh'd & Khashan, Saud A. & Al-Oqla, Hashem, 2023. "Novel techniques to enhance the performance of Stirling engines integrated with solar systems," Renewable Energy, Elsevier, vol. 202(C), pages 894-906.
    4. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.
    5. Mohamed Toub & Chethan R. Reddy & Rush D. Robinett & Mahdi Shahbakhti, 2021. "Integration and Optimal Control of MicroCSP with Building HVAC Systems: Review and Future Directions," Energies, MDPI, vol. 14(3), pages 1-41, January.
    6. Li, Xueling & Li, Renfu & Hu, Lin & Zhu, Shengjie & Zhang, Yuanyuan & Cui, Xinguang & Li, Yichao, 2023. "Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base," Energy, Elsevier, vol. 263(PE).
    7. Tavakolpour-Saleh, A.R. & Hamzavi, A. & Omidvar, A., 2021. "A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle," Energy, Elsevier, vol. 227(C).
    8. Nourhane Merabet & Lina Chouichi & Kaouther Kerboua, 2022. "Numerical design and simulation of a thermodynamic solar solution for a pilot residential building at the edge of the sun-belt region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12582-12608, November.
    9. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buscemi, Alessandro & Lo Brano, Valerio & Chiaruzzi, Christian & Ciulla, Giuseppina & Kalogeri, Christina, 2020. "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, Elsevier, vol. 260(C).
    2. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    3. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    4. Carrillo Caballero, Gaylord Enrique & Mendoza, Luis Sebastian & Martinez, Arnaldo Martin & Silva, Electo Eduardo & Melian, Vladimir Rafael & Venturini, Osvaldo José & del Olmo, Oscar Almazán, 2017. "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, Elsevier, vol. 204(C), pages 271-286.
    5. Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
    6. Glynn John, S. & Lakshmanan, T., 2017. "Cost optimization of dish solar concentrators for improved scalability decisions," Renewable Energy, Elsevier, vol. 114(PB), pages 600-613.
    7. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    8. Bataineh, Khaled, 2024. "Hybrid fuel-assisted solar-powered stirling engine for combined cooling, heating, and power systems: A review," Energy, Elsevier, vol. 300(C).
    9. Parlak, Nezaket & Wagner, Andreas & Elsner, Michael & Soyhan, Hakan S., 2009. "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, Elsevier, vol. 34(1), pages 266-273.
    10. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    11. Patel, Vivek & Savsani, Vimal, 2016. "Multi-objective optimization of a Stirling heat engine using TS-TLBO (tutorial training and self learning inspired teaching-learning based optimization) algorithm," Energy, Elsevier, vol. 95(C), pages 528-541.
    12. Ahmadi, Mohammad H. & Hosseinzade, Hadi & Sayyaadi, Hoseyn & Mohammadi, Amir H. & Kimiaghalam, Farshad, 2013. "Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss," Renewable Energy, Elsevier, vol. 60(C), pages 313-322.
    13. Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
    14. Hu, Dinghua & Li, Mengmeng & Li, Qiang, 2021. "A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis," Energy, Elsevier, vol. 223(C).
    15. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    16. Zhang, Wei & Chen, Miao & Zhang, Shaofeng & Wang, Yiping, 2020. "Designation of a solar falling-film photochemical hybrid system for the decolorization of azo dyes," Energy, Elsevier, vol. 197(C).
    17. Solmuş, İsmail & Yamalı, Cemil & Yıldırım, Cihan & Bilen, Kadir, 2015. "Transient behavior of a cylindrical adsorbent bed during the adsorption process," Applied Energy, Elsevier, vol. 142(C), pages 115-124.
    18. Yang, Song & Wang, Jun & Lund, Peter D. & Jiang, Chuan & Liu, Deli, 2018. "Assessing the impact of optical errors in a novel 2-stage dish concentrator using Monte-Carlo ray-tracing simulation," Renewable Energy, Elsevier, vol. 123(C), pages 603-615.
    19. Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
    20. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:573-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.