IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp798-810.html
   My bibliography  Save this article

Improving photovoltaics efficiency by water cooling: Modelling and experimental approach

Author

Listed:
  • Schiro, Fabio
  • Benato, Alberto
  • Stoppato, Anna
  • Destro, Nicola

Abstract

The increase of photovoltaic cells operating temperature causes an almost linear reduction of their performance. Therefore, continuous efforts need to be done to improve the cells efficiency by controlling their temperature. For this reason, in the present work, the possibility of adding a cooling system to existing photovoltaic units without changing the original module structure is investigated. The selected cooling methods use water to cool the module front side. To investigate the system behaviour, a steady-state and a PV dynamic model have been firstly developed. The steady-state thermal model is used to compute the module permanent regime temperature in relation to fixed and constant ambient conditions and cooling regime while the dynamic model is used to predict the time-response of the module thermal mass during the variation of external parameters. Then, after the design and installation of a test facility, preliminary experimental investigations have been carried out to validate the mathematical models. Finally, the energy and economic performance of the system and the identification of guidelines able to improve the PV overall performance have been presented and discussed. Some preliminary outcomes of the experimental activity on photovoltaic cooling are also outlined.

Suggested Citation

  • Schiro, Fabio & Benato, Alberto & Stoppato, Anna & Destro, Nicola, 2017. "Improving photovoltaics efficiency by water cooling: Modelling and experimental approach," Energy, Elsevier, vol. 137(C), pages 798-810.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:798-810
    DOI: 10.1016/j.energy.2017.04.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    2. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    3. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    4. Wilson, Earle, 2009. "Theoretical and operational thermal performance of a ‘wet’ crystalline silicon PV module under Jamaican conditions," Renewable Energy, Elsevier, vol. 34(6), pages 1655-1660.
    5. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    6. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    2. Zhang, Wei & Chen, Miao & Zhang, Shaofeng & Wang, Yiping, 2020. "Designation of a solar falling-film photochemical hybrid system for the decolorization of azo dyes," Energy, Elsevier, vol. 197(C).
    3. Wang, Ji-Xiang & Li, Yun-Ze & Li, Jia-Xin & Li, Chao & Xiong, Kai & Ning, Xian-Wen, 2018. "Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector," Energy, Elsevier, vol. 158(C), pages 512-523.
    4. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    5. Lai, Xiaotian & Yu, Minjie & Long, Rui & Liu, Zhichun & Liu, Wei, 2019. "Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model," Energy, Elsevier, vol. 183(C), pages 573-583.
    6. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    7. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    8. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    9. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    10. Silvestre, Santiago & Tahri, Ali & Tahri, Fatima & Benlebna, Soumiya & Chouder, Aissa, 2018. "Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 152(C), pages 57-63.
    11. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    12. Rajvikram Madurai Elavarasan & Karthikeyan Velmurugan & Umashankar Subramaniam & A Rakesh Kumar & Dhafer Almakhles, 2020. "Experimental Investigations Conducted for the Characteristic Study of OM29 Phase Change Material and Its Incorporation in Photovoltaic Panel," Energies, MDPI, vol. 13(4), pages 1-18, February.
    13. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Qiao, Yaning & Zhang, Xin, 2020. "Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system," Energy, Elsevier, vol. 206(C).
    14. Yu Zheng & Xiaoming Li & Wenjie Zhang & Kuan Wang & Feng Han & Xiaoge Li & Yuqiang Zhao, 2022. "Experimental Study of Phase Change Microcapsule Suspensions Applied in BIPV Construction," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    15. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    16. Pang, Wei & Zhang, Yongzhe & Duck, Benjamin C. & Yu, Hongwen & Song, Xuemei & Yan, Hui, 2020. "Cross sectional geometries effect on the energy efficiency of a photovoltaic thermal module: Numerical simulation and experimental validation," Energy, Elsevier, vol. 209(C).
    17. María Magdalena Armendáriz-Ontiveros & Germán Eduardo Dévora-Isiordia & Jorge Rodríguez-López & Reyna Guadalupe Sánchez-Duarte & Jesús Álvarez-Sánchez & Yedidia Villegas-Peralta & María del Rosario Ma, 2022. "Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System," Energies, MDPI, vol. 15(20), pages 1-15, October.
    18. Vladan Durković & Željko Đurišić, 2017. "Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro," Energies, MDPI, vol. 10(10), pages 1-23, September.
    19. Salameh, Tareq & Tawalbeh, Muhammad & Juaidi, Adel & Abdallah, Ramez & Hamid, Abdul-Kadir, 2021. "A novel three-dimensional numerical model for PV/T water system in hot climate region," Renewable Energy, Elsevier, vol. 164(C), pages 1320-1333.
    20. Liu, Yanfeng & Chen, Yingya & Wang, Dengjia & Liu, Jingrui & Luo, Xi & Wang, Yingying & Liu, Huaican & Liu, Jiaping, 2021. "Experimental and numerical analyses of parameter optimization of photovoltaic cooling system," Energy, Elsevier, vol. 215(PA).
    21. Alberto Benato & Anna Stoppato, 2019. "An Experimental Investigation of a Novel Low-Cost Photovoltaic Panel Active Cooling System," Energies, MDPI, vol. 12(8), pages 1-24, April.
    22. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    23. Pang, Wei & Zhang, Qian & Cui, Yanan & Zhang, Linrui & Yu, Hongwen & Zhang, Xiaoyan & Zhang, Yongzhe & Yan, Hui, 2019. "Numerical simulation and experimental validation of a photovoltaic/thermal system based on a roll-bond aluminum collector," Energy, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    3. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    4. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    5. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    6. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    7. Yu, Y. & Yang, H. & Peng, J. & Long, E., 2019. "Performance comparisons of two flat-plate photovoltaic thermal collectors with different channel configurations," Energy, Elsevier, vol. 175(C), pages 300-308.
    8. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    9. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    10. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    11. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    12. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    15. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    16. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    17. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    18. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    19. Widyolar, Bennett & Jiang, Lun & Brinkley, Jordyn & Hota, Sai Kiran & Ferry, Jonathan & Diaz, Gerardo & Winston, Roland, 2020. "Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics," Applied Energy, Elsevier, vol. 268(C).
    20. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:798-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.