IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p266-273.html
   My bibliography  Save this article

Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions

Author

Listed:
  • Parlak, Nezaket
  • Wagner, Andreas
  • Elsner, Michael
  • Soyhan, Hakan S.

Abstract

In this study, a thermodynamic analysis of a gamma type Stirling engine is performed by using a quasi steady flow model based on Urieli and Berchowitz's works. The Stirling engine analysis is performed for five principal fields: compression room, expansion room, cooler, heater and regenerator. The conservation law of the mass and the energy equations are derived for the related sections. A FORTRAN code is developed to solve the derived equations for all process parameters like pressure, temperature, mass flow, dissipation and convection losses for the different spaces (compression space, cooler, regenerator, heater and expansion space) as a function of the crank angle. The developed model gave more precise results for the pressure profile than the models available in the literature.

Suggested Citation

  • Parlak, Nezaket & Wagner, Andreas & Elsner, Michael & Soyhan, Hakan S., 2009. "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, Elsevier, vol. 34(1), pages 266-273.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:266-273
    DOI: 10.1016/j.renene.2008.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108000815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cinar, Can & Yucesu, Serdar & Topgul, Tolga & Okur, Melih, 2005. "Beta-type Stirling engine operating at atmospheric pressure," Applied Energy, Elsevier, vol. 81(4), pages 351-357, August.
    2. Blank, David A. & Wu, Chih, 1995. "Power optimization of an extra-terrestrial, solar-radiant stirling heat engine," Energy, Elsevier, vol. 20(6), pages 523-530.
    3. Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
    4. Karabulut, H. & Yücesu, H.S. & Çinar, C., 2006. "Nodal analysis of a Stirling engine with concentric piston and displacer," Renewable Energy, Elsevier, vol. 31(13), pages 2188-2197.
    5. Kongtragool, Bancha & Wongwises, Somchai, 2007. "Performance of low-temperature differential Stirling engines," Renewable Energy, Elsevier, vol. 32(4), pages 547-566.
    6. Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2015. "A new thermal model based on polytropic numerical simulation of Stirling engines," Applied Energy, Elsevier, vol. 141(C), pages 143-159.
    2. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2012. "Zero dimensional finite-time thermodynamic, three zones numerical model of a generic Stirling and its experimental validation," Renewable Energy, Elsevier, vol. 47(C), pages 167-174.
    3. Valenti, G. & Silva, P. & Fergnani, N. & Campanari, S. & Ravidà, A. & Di Marcoberardino, G. & Macchi, E., 2015. "Experimental and numerical study of a micro-cogeneration Stirling unit under diverse conditions of the working fluid," Applied Energy, Elsevier, vol. 160(C), pages 920-929.
    4. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    5. Dong-Jun Kim & Yeongchae Park & Tae Young Kim & Kyuho Sim, 2022. "Design Optimization of Tubular Heat Exchangers for a Free-Piston Stirling Engine Based on Improved Quasi-Steady Flow Thermodynamic Model Predictions," Energies, MDPI, vol. 15(9), pages 1-20, May.
    6. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    7. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    8. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    9. Chen, Wen-Lih & Chen, Chao-Kuang & Fang, Mao-Ju & Yang, Yu-Ching, 2018. "A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine," Energy, Elsevier, vol. 144(C), pages 679-693.
    10. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    11. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    12. Saneipoor, P. & Naterer, G.F. & Dincer, I., 2011. "Power generation from a new air-based Marnoch heat engine," Energy, Elsevier, vol. 36(12), pages 6879-6889.
    13. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2016. "Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming," Energy, Elsevier, vol. 98(C), pages 324-339.
    14. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.
    15. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2010. "Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 35(11), pages 2590-2601.
    16. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    17. Rui F. Costa & Brendan D. MacDonald, 2018. "Comparison of the Net Work Output between Stirling and Ericsson Cycles," Energies, MDPI, vol. 11(3), pages 1-16, March.
    18. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
    19. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    20. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    2. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2012. "Optimization of geometrical parameters for Stirling engines based on theoretical analysis," Applied Energy, Elsevier, vol. 92(C), pages 395-405.
    3. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    4. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    5. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
    6. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    7. Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
    8. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    9. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    10. Li, Ruijie & Grosu, Lavinia & Li, Wei, 2017. "New polytropic model to predict the performance of beta and gamma type Stirling engine," Energy, Elsevier, vol. 128(C), pages 62-76.
    11. Lai, Xiaotian & Yu, Minjie & Long, Rui & Liu, Zhichun & Liu, Wei, 2019. "Dynamic performance analysis and optimization of dish solar Stirling engine based on a modified theoretical model," Energy, Elsevier, vol. 183(C), pages 573-583.
    12. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
    13. Jacek Kropiwnicki & Mariusz Furmanek, 2020. "A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines," Energies, MDPI, vol. 13(7), pages 1-21, April.
    14. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    15. Sripakagorn, Angkee & Srikam, Chana, 2011. "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, Elsevier, vol. 36(6), pages 1728-1733.
    16. Tlili, Iskander, 2012. "Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2234-2241.
    17. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    19. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    20. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:266-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.