IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8155-d695556.html
   My bibliography  Save this article

A Linear Hybrid Concentrated Photovoltaic Solar Collector: A Methodology Proposal of Optical and Thermal Analysis

Author

Listed:
  • Eduardo Venegas-Reyes

    (IMTA-Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec 62550, Morelos, Mexico)

  • Naghelli Ortega-Avila

    (CONACYT-Centro de Investigación en Materiales Avanzados S.C., Calle CIMAV 110, Ejido Arroyo Seco 34147, Durango, Mexico)

  • Manuel I. Peña-Cruz

    (CONACYT-Centro de Investigaciones en Óptica A.C., Unidad Aguascalientes, Prol. Constitución 607, Aguascalientes 20200, Aguascalientes, Mexico)

  • Omar J. García-Ortiz

    (Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados S.C., Calle CIMAV 110, Ejido Arroyo Seco 34147, Durango, Mexico)

  • Norma A. Rodríguez-Muñoz

    (CONACYT-Centro de Investigación en Materiales Avanzados S.C., Calle CIMAV 110, Ejido Arroyo Seco 34147, Durango, Mexico)

Abstract

The photovoltaic cell surface in linear hybrid concentrated solar collectors receives non-uniform radiative flux, causing additional thermal stress due to hot spots and reducing its electrical performance and durability. The current study proposes a parametric methodology to determine the optimal receiver displacement required in a linear Cassegrain-type hybrid solar collector. The aim was to achieve a minimal non-uniformity distribution and a high radiative flux over the photovoltaic cells, considering optical errors close to real environment conditions and analyzing the heat transfer to determine the electrical and thermal efficiencies. The developed methodology was applied to analyze a case study with a receiver width of 0.125 m and rim angle of 80° and using a commercial silicon photovoltaic cell that supports up to 7000 W/m 2 . After applying the methodology, a hybrid solar collector with a concentration ratio of 13.0 and receiver displacement of 0.14 m is recommended. As a result, 5728 W/m 2 of average radiative flux with non-uniformity lower than 4% was achieved. Thus, thanks to the proposed configuration, a low non-uniformity and high radiative flux were achieved, benefiting the photovoltaic cells’ life while improving their operation.

Suggested Citation

  • Eduardo Venegas-Reyes & Naghelli Ortega-Avila & Manuel I. Peña-Cruz & Omar J. García-Ortiz & Norma A. Rodríguez-Muñoz, 2021. "A Linear Hybrid Concentrated Photovoltaic Solar Collector: A Methodology Proposal of Optical and Thermal Analysis," Energies, MDPI, vol. 14(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8155-:d:695556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Shaobing & Tang, Runsheng & Wang, Changmei, 2021. "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, Elsevier, vol. 233(C).
    2. Wang, Gang & Yao, Yubo & Lin, Jianqing & Chen, Zeshao & Hu, Peng, 2020. "Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter," Renewable Energy, Elsevier, vol. 155(C), pages 1091-1102.
    3. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    4. Pouriya Nasseriyan & Hossein Afzali Gorouh & João Gomes & Diogo Cabral & Mazyar Salmanzadeh & Tiffany Lehmann & Abolfazl Hayati, 2020. "Numerical and Experimental Study of an Asymmetric CPC-PVT Solar Collector," Energies, MDPI, vol. 13(7), pages 1-21, April.
    5. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    7. Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
    8. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    9. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    10. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    11. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    12. Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Ali Alahmer & Hegazy Rezk, 2020. "Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waseem Iqbal & Irfan Ullah & Seoyong Shin, 2023. "Nonimaging High Concentrating Photovoltaic System Using Trough," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Zhang, Qiangqiang & Chang, Zheshao & Fu, Mingkai & Nie, Fuliang & Ren, Ting & Li, Xin, 2023. "Performance analysis of a light uniform device for the solar receiver or reactor," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    4. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    5. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    8. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    9. Li, Jinyu & Yang, Zhengda & Ge, Yi & Wang, Yiya & Dong, Qiwei & Wang, Xinwei & Lin, Riyi, 2024. "Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration," Energy, Elsevier, vol. 292(C).
    10. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    11. Dimitrios N. Korres & Theodoros Papingiotis & Irene Koronaki & Christos Tzivanidis, 2023. "Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    12. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Cabral, Diogo, 2022. "Development and performance comparison of a modified glazed CPC hybrid solar collector coupled with a bifacial PVT receiver," Applied Energy, Elsevier, vol. 325(C).
    14. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    15. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    16. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    17. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    19. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Wang, Gang & Wang, Fasi & Shen, Fan & Chen, Zeshao & Hu, Peng, 2019. "Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector," Energy, Elsevier, vol. 180(C), pages 133-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8155-:d:695556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.