IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221014237.html
   My bibliography  Save this article

Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror

Author

Listed:
  • Wu, Shaobing
  • Tang, Runsheng
  • Wang, Changmei

Abstract

The intercept factor is the most complex parameter involved in determining the optical efficiency of a parabolic trough solar collector. A numerical algorithm method was proposed to calculate the intercept factors of a parabolic trough solar collector using the Gauss error function and a Python program. The results indicate that the intercept factors can be calculated quickly and conveniently using the proposed method. We also introduced a numerical solution to calculate the intercept factor of the parabolic trough solar collector, which can provide accurate interception factors for different types of secondary reflection concentrators. The new analytical method was validated and benchmarked against a Gauss error function and Python program, demonstrating that the deviations were below 0.0015% for most cases studied. The primary goals of this study were to determine an appropriate numerical method to solve the intercept factors and errors for different secondary mirror types and to incorporate the selected intercept factor calculation into a secondary mirror design for a parabolic trough solar collector under various conditions.

Suggested Citation

  • Wu, Shaobing & Tang, Runsheng & Wang, Changmei, 2021. "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014237
    DOI: 10.1016/j.energy.2021.121175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.
    2. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    3. Huang, Weidong & Huang, Farong & Hu, Peng & Chen, Zeshao, 2013. "Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function," Renewable Energy, Elsevier, vol. 53(C), pages 18-26.
    4. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    5. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    6. Kurbatova, Galina I. & Klemeshev, Vladimir A., 2020. "Effective numerical methods for calculating non-stationary heat and glaciation dynamic processes for offshore gas pipelines," Energy, Elsevier, vol. 205(C).
    7. Salamanca, Santiago & Merchán, Pilar & Adán, Antonio & Pérez, Emiliano, 2019. "An appraisal of the geometry and energy efficiency of parabolic trough collectors with laser scanners and image processing," Renewable Energy, Elsevier, vol. 134(C), pages 64-77.
    8. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Venegas-Reyes & Naghelli Ortega-Avila & Manuel I. Peña-Cruz & Omar J. García-Ortiz & Norma A. Rodríguez-Muñoz, 2021. "A Linear Hybrid Concentrated Photovoltaic Solar Collector: A Methodology Proposal of Optical and Thermal Analysis," Energies, MDPI, vol. 14(23), pages 1-17, December.
    2. Song, Jifeng & Wu, Zhaoxuan & Wang, Juntao & Zhang, Kexin & Wang, Kai & Liu, Kunhao & Duan, Liqiang & Hou, Hongjuan, 2021. "Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches," Renewable Energy, Elsevier, vol. 180(C), pages 1391-1404.
    3. Wu, Shaobing & Wang, Changmei & Tang, Runsheng, 2022. "Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning," Renewable Energy, Elsevier, vol. 188(C), pages 437-449.
    4. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.
    2. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    3. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Wei, Haokun & Liu, Jian & Yang, Biao, 2014. "Cost-benefit comparison between Domestic Solar Water Heater (DSHW) and Building Integrated Photovoltaic (BIPV) systems for households in urban China," Applied Energy, Elsevier, vol. 126(C), pages 47-55.
    6. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    7. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    8. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    10. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    11. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    12. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    13. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    14. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    15. Wang, Hongsheng & Wang, Bingzheng & Qi, Xingyu & Wang, Jian & Yang, Rufan & Li, Duanxing & Hu, Xuejiao, 2021. "Innovative non–oxidative methane dehydroaromatization via solar membrane reactor," Energy, Elsevier, vol. 216(C).
    16. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    17. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    18. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    19. Momeni, Farhang & Ni, Jun, 2018. "Nature-inspired smart solar concentrators by 4D printing," Renewable Energy, Elsevier, vol. 122(C), pages 35-44.
    20. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.