Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.01.117
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Wu, Shaobing & Tang, Runsheng & Wang, Changmei, 2021. "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, Elsevier, vol. 233(C).
- Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Zhang, Hongxin & Wang, Zhifeng, 2011. "Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants," Renewable Energy, Elsevier, vol. 36(10), pages 2687-2693.
- Kalogirou, Soteris, 1996. "Parabolic trough collector system for low temperature steam generation: Design and performance characteristics," Applied Energy, Elsevier, vol. 55(1), pages 1-19, September.
- Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
- Salamanca, Santiago & Merchán, Pilar & Adán, Antonio & Pérez, Emiliano, 2019. "An appraisal of the geometry and energy efficiency of parabolic trough collectors with laser scanners and image processing," Renewable Energy, Elsevier, vol. 134(C), pages 64-77.
- Xu, Ruihua & Tang, Runsheng & Mawire, Ashmore, 2019. "A mathematical procedure to predict optical efficiency of CPCs with tubular absorbers," Energy, Elsevier, vol. 182(C), pages 187-200.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
- Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
- Hu, Xin & Chen, Fei & Zhang, Zhenhua, 2021. "Model construction and optical properties investigation for multi-sectioned compound parabolic concentrator with particle swarm optimization," Renewable Energy, Elsevier, vol. 179(C), pages 379-394.
- Chen, Zhuo & Han, Xinyue & Ma, Yu, 2024. "Performance analysis of a novel direct absorption parabolic trough solar collector with combined absorption using MCRT and FVM coupled method," Renewable Energy, Elsevier, vol. 220(C).
- Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
- He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
- Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
- Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
- Liu, Shuaishuai & Yang, Bin & Yu, Xiaohui, 2024. "Thermal transfer characteristics and thermoelasticity analysis of direct-steam-generation parabolic trough collector," Renewable Energy, Elsevier, vol. 234(C).
- Choi, Seok Min & Kwon, Hyun Goo & Bae, Hyung Mo & Moon, Hee Koo & Cho, Hyung Hee, 2023. "Effects of staggered dimple array under different flow conditions for enhancing cooling performance of solar systems," Applied Energy, Elsevier, vol. 342(C).
- Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
- Ni, Song & Pan, Chin & Hibiki, Takashi & Zhao, Jiyun, 2024. "Applications of nucleate boiling in renewable energy and thermal management and recent advances in modeling——a review," Energy, Elsevier, vol. 289(C).
- Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
- Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
- Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
- Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
- Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
- Laporte-Azcué, M. & Rodríguez-Sánchez, M.R. & González-Gómez, P.A. & Santana, D., 2021. "Assessment of the time resolution used to estimate the central solar receiver lifetime," Applied Energy, Elsevier, vol. 301(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:437-449. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp437-449.html