IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223002372.html
   My bibliography  Save this article

Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape

Author

Listed:
  • Zhang, Xueyan
  • Gao, Teng
  • Liu, Yang
  • Chen, Fei

Abstract

Conventional solar CPC (Compound Parabolic Concentrator, CPC) has a limited collection of solar radiation at the end of the concentrating surface, which is not conducive to its wide application. In the present research, a solar CT-CPC (Critically Truncated CPC, CT-CPC) without light escape is proposed and constructed for the vacuum tube absorber, and discusses its optical properties, which provides a choice for improving or reforming the existing CPC system. Based on the edge ray principle, the geometric model of the CT-CPC is designed by the dichotomy method, and the concentrating performance of the CT-CPC is verified by the adjustable laser experiment. The study found that the average optical efficiency of CT-CPC reaches 47.84% and is 7.2% higher than the traditional S-CPC (Standard CPC, S-CPC) without light escape at the same aperture, and the energy flux distribution on the absorber surface is also more uniform, which is beneficial to improving system efficiency. The effective working hours of CT-CPC is higher than the S-CPC in the whole year, and the average effective working hours is 8.8 h and 5.7 h, respectively. The total annual radiation collection of CT-CPC is 3397 MJ/m2, which is 11.2% higher than the S-CPC. Furthermore, the economic analysis shows that solar CT-CPC has significant advantages and more friendly engineering application potential.

Suggested Citation

  • Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002372
    DOI: 10.1016/j.energy.2023.126843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    2. Zhang, Gaoming & Wei, Jinjia & Wang, Zexin & Xie, Huling & Xi, Yonghao & Khalid, Muhammad, 2019. "Investigation into effects of non-uniform irradiance and photovoltaic temperature on performances of photovoltaic/thermal systems coupled with truncated compound parabolic concentrators," Applied Energy, Elsevier, vol. 250(C), pages 245-256.
    3. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system," Energy, Elsevier, vol. 171(C), pages 611-623.
    4. Lin, Xiaoxia & He, Caitou & Huang, Wenjun & Zhao, Yuhong & Feng, Jieqing, 2022. "GPU-based Monte Carlo ray tracing simulation considering refraction for central receiver system," Renewable Energy, Elsevier, vol. 193(C), pages 367-382.
    5. Chen, Xiaomeng & Yang, Xudong, 2021. "Solar collector with asymmetric compound parabolic concentrator for winter energy harvesting and summer overheating reduction: Concept and prototype device," Renewable Energy, Elsevier, vol. 173(C), pages 92-104.
    6. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    7. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    8. Lee, Chung-Jui & Lin, Jen-Fin, 2012. "High-efficiency concentrated optical module," Energy, Elsevier, vol. 44(1), pages 593-603.
    9. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.
    10. Tang, Runsheng & Wang, Jinfu, 2013. "A note on multiple reflections of radiation within CPCs and its effect on calculations of energy collection," Renewable Energy, Elsevier, vol. 57(C), pages 490-496.
    11. Wang, Lu & Ma, Xinglong & Zhao, Yunsheng & Jin, Rihui & Zheng, Hongfei, 2022. "Performance study of a passive vertical multiple-effect diffusion solar still directly heated by parabolic concentrator," Renewable Energy, Elsevier, vol. 182(C), pages 855-866.
    12. Tíba, Chigueru & Fraidenraich, Naum, 2011. "Optical and thermal optimization of stationary non-evacuated CPC solar concentrator with fully illuminated wedge receivers," Renewable Energy, Elsevier, vol. 36(9), pages 2547-2553.
    13. Venkatachalam, Thirunavukkarasu & Cheralathan, M., 2019. "Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study," Renewable Energy, Elsevier, vol. 139(C), pages 573-581.
    14. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    15. Xu, Ruihua & Tang, Runsheng & Mawire, Ashmore, 2019. "A mathematical procedure to predict optical efficiency of CPCs with tubular absorbers," Energy, Elsevier, vol. 182(C), pages 187-200.
    16. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.
    17. Chandan, & Dey, Sumon & Iqbal, S.Md. & Reddy, K.S. & Pesala, Bala, 2021. "Numerical modeling and performance assessment of elongated compound parabolic concentrator based LCPVT system," Renewable Energy, Elsevier, vol. 167(C), pages 199-216.
    18. Kong, Xiangfei & Zhang, Lanlan & Li, Han & Wang, Yongzhen & Fan, Man, 2022. "Effect of solar energy concentrating and phase change cooling on energy and exergy performance improvement of photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 197(C), pages 1251-1263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    2. Gui, Qinghua & Chen, Fei & Liu, Yang & Luo, Huilong, 2023. "Preliminary study on photo-thermal conversion investigation of compound parabolic concentrator for eliminate light escape in vacuum tube interlayer," Energy, Elsevier, vol. 271(C).
    3. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    4. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.
    5. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    6. Guihua Li & Yamei Yu & Runsheng Tang, 2020. "Performance and Design Optimization of Two-Mirror Composite Concentrating PV Systems," Energies, MDPI, vol. 13(11), pages 1-23, June.
    7. Hu, Xin & Chen, Fei & Zhang, Zhenhua, 2021. "Model construction and optical properties investigation for multi-sectioned compound parabolic concentrator with particle swarm optimization," Renewable Energy, Elsevier, vol. 179(C), pages 379-394.
    8. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.
    9. Wu, Shaobing & Wang, Changmei & Tang, Runsheng, 2022. "Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning," Renewable Energy, Elsevier, vol. 188(C), pages 437-449.
    10. Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
    11. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    12. Xu, Jintao & Chen, Fei & Deng, Chenggang, 2021. "Design and analysis of a novel multi-sectioned compound parabolic concentrator with multi-objective genetic algorithm," Energy, Elsevier, vol. 225(C).
    13. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    14. Zhang, Xueyan & Li, Jiayue & Chen, Jun & Chen, Fei, 2023. "Preliminary investigation on optical performance of linear fresnel lens coupled compound parabolic concentrator," Energy, Elsevier, vol. 278(PA).
    15. Jingjing Tang & Yamei Yu & Runsheng Tang, 2018. "A Three-Dimensional Radiation Transfer Model to Evaluate Performance of Compound Parabolic Concentrator-Based Photovoltaic Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
    16. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    17. Zhang, Xueyan & Jiang, Shuoxun & Lin, Ziming & Gui, Qinghua & Chen, Fei, 2023. "Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber," Energy, Elsevier, vol. 267(C).
    18. Gong, Jing-hu & Zhang, Zhi-peng & Sun, Zhi-hao & Wang, Yu-guang & Wang, Jun & Lund, Peter D., 2023. "Thermal and thermo-mechanical analysis of a novel pass-through all-glass evacuated collector tube by combining experiment with numerical simulation," Energy, Elsevier, vol. 277(C).
    19. Barthwal, Mohit & Rakshit, Dibakar, 2023. "A solar spectral splitting-based PVT collector with packed transparent tube receiver for co-generation of heat and electricity," Applied Energy, Elsevier, vol. 352(C).
    20. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223002372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.