IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v177y2019icp136-143.html
   My bibliography  Save this article

Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin

Author

Listed:
  • Kwon, Gihoon
  • Tsang, Daniel C.W.
  • Oh, Jeong-Ik
  • Kwon, Eilhann E.
  • Song, Hocheol

Abstract

Here in this study, the thermolysis of aquatic biopolymer (i.e., chitin) was mainly investigated as a strategic means for reinforcing the insecure supply chains of terrestrial biomass. To maximize carbon utilization in the carbon substrate and establish a sustainable pyrolysis platform, this study particularly employed CO2 as reactive gas medium. To this end, this study laid great emphasis on elucidating the mechanistic role of CO2 in pyrolysis of chitin. For the fundamental study, the thermolysis of chitin in CO2 in reference to the case in N2 was characterized thermo-gravimetrically. A series of the TGA tests signified that the homogeneous reactions between solid-state chitin and CO2 should be excluded. However, a lab-scale pyrolysis of chitin in CO2 demonstrated that CO2 enhanced thermal cracking of the volatile hydrocarbon species from the thermolysis of chitin. In parallel, CO2 reacted with the volatile hydrocarbon species to form CO. To justify such genuine mechanistic roles of CO2, two-stage pyrolysis of chitin was conducted, and all experimental findings strongly supported the genuine mechanistic roles of CO2.

Suggested Citation

  • Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
  • Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:136-143
    DOI: 10.1016/j.energy.2019.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    2. Huh, Sung-Yoon & Lee, Jongsu & Shin, Jungwoo, 2015. "The economic value of South Korea׳s renewable energy policies (RPS, RFS, and RHO): A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 64-72.
    3. Mirmasoumi, Siamak & Ebrahimi, Sirous & Saray, Rahim Khoshbakhti, 2018. "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions," Energy, Elsevier, vol. 157(C), pages 707-717.
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    6. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    7. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    8. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    9. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    10. Firouzi, Saeed & Nikkhah, Amin & Aminpanah, Hashem, 2018. "Resource use efficiency of rice production upon single cropping and ratooning agro-systems in terms of bioethanol feedstock production," Energy, Elsevier, vol. 150(C), pages 694-701.
    11. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
    12. Harahap, Fumi & Silveira, Semida & Khatiwada, Dilip, 2019. "Cost competitiveness of palm oil biodiesel production in Indonesia," Energy, Elsevier, vol. 170(C), pages 62-72.
    13. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    14. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    15. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    16. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    17. Xing, Shiyou & Yuan, Haoran & Huhetaoli, & Qi, Yujie & Lv, Pengmei & Yuan, Zhenhong & Chen, Yong, 2016. "Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and Py-GC/MS analysis," Energy, Elsevier, vol. 114(C), pages 634-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yaping & Lin, Junhao & Liao, Qinxiong & Sun, Shichang & Ma, Rui & Fang, Lin & Liu, Xiangli, 2021. "CO2-assisted catalytic municipal sludge for carbonaceous biofuel via sub- and supercritical water gasification," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dong-Jun & Jung, Sungyup & Jeong, Kwang-Hwa & Lee, Dong-Hyun & Lee, Sung-Hyoun & Park, Young-Kwon & Kwon, Eilhann E., 2020. "Catalytic pyrolysis of cow manure over a Ni/SiO2 catalyst using CO2 as a reaction medium," Energy, Elsevier, vol. 195(C).
    2. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    3. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    4. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    5. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    8. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    9. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
    10. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    11. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    12. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    13. Wu, Shaobing & Tang, Runsheng & Wang, Changmei, 2021. "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, Elsevier, vol. 233(C).
    14. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    16. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    17. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    18. Wang, Hongsheng & Wang, Bingzheng & Qi, Xingyu & Wang, Jian & Yang, Rufan & Li, Duanxing & Hu, Xuejiao, 2021. "Innovative non–oxidative methane dehydroaromatization via solar membrane reactor," Energy, Elsevier, vol. 216(C).
    19. Momeni, Farhang & Ni, Jun, 2018. "Nature-inspired smart solar concentrators by 4D printing," Renewable Energy, Elsevier, vol. 122(C), pages 35-44.
    20. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:177:y:2019:i:c:p:136-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.