IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v177y2019icp66-76.html
   My bibliography  Save this article

Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study

Author

Listed:
  • Zhang, Heng
  • Liang, Kai
  • Chen, Haiping
  • Gao, Dan
  • Guo, Xinxin

Abstract

Photovoltaic/thermal (PV/T) technologies are used to comprehensively utilize photovoltaic and solar thermal, among which concentrating PV/T technology can enhance the performance of a PV/T system. To analyze the performance of a LCPV/T system with a geometric concentration ratio of 4, the LCPV/T system and a conventional flat-plate PV/T system were fabricated and experimentally studied under a constant flow rate condition. The results show that the electrical power and thermal power of the LCPV/T system were 3 and 1.9–2 times more than those of the flat-plate system. The comparative experimental study indicates that the electrical performance of LCPV/T system is significantly greater than the flat-plate system, and the thermal performance of LCPV/T system slightly improved and should be optimized because of the heat transfer factor.

Suggested Citation

  • Zhang, Heng & Liang, Kai & Chen, Haiping & Gao, Dan & Guo, Xinxin, 2019. "Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study," Energy, Elsevier, vol. 177(C), pages 66-76.
  • Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:66-76
    DOI: 10.1016/j.energy.2019.04.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    2. Zhang, Heng & Chen, Haiping & Han, Yuchen & Liu, Haowen & Li, Mingjie, 2017. "Experimental and simulation studies on a novel compound parabolic concentrator," Renewable Energy, Elsevier, vol. 113(C), pages 784-794.
    3. Kostic, Lj.T. & Pavlovic, T.M. & Pavlovic, Z.T., 2010. "Optimal design of orientation of PV/T collector with reflectors," Applied Energy, Elsevier, vol. 87(10), pages 3023-3029, October.
    4. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2017. "Experimental and Numerical Analyses of a Flat Plate Photovoltaic/Thermal Solar Collector," Energies, MDPI, vol. 10(4), pages 1-21, April.
    5. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    6. Kumar, Anil & Baredar, Prashant & Qureshi, Uzma, 2015. "Historical and recent development of photovoltaic thermal (PVT) technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1428-1436.
    7. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    8. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    2. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    3. Kong, Xiangfei & Zhang, Lanlan & Li, Han & Wang, Yongzhen & Fan, Man, 2022. "Effect of solar energy concentrating and phase change cooling on energy and exergy performance improvement of photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 197(C), pages 1251-1263.
    4. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2022. "Hybridization of a parabolic trough-based thermal plant for industrial heat and power generation," Renewable Energy, Elsevier, vol. 191(C), pages 961-973.
    5. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    6. Afzali Gorouh, Hossein & Salmanzadeh, Mazyar & Nasseriyan, Pouriya & Hayati, Abolfazl & Cabral, Diogo & Gomes, João & Karlsson, Björn, 2022. "Thermal modelling and experimental evaluation of a novel concentrating photovoltaic thermal collector (CPVT) with parabolic concentrator," Renewable Energy, Elsevier, vol. 181(C), pages 535-553.
    7. Gao, Dan & Zhao, Yang & Liang, Kai & He, Shuyu & Zhang, Heng & Chen, Haiping, 2022. "Energy and exergy analyses of a low-concentration photovoltaic/thermal module with glass channel," Energy, Elsevier, vol. 253(C).
    8. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    9. Xu, Shi-Jie & Wu, Shuang-Ying & Xiao, Lan & Xue, Pei & Wang, Chong-Yang, 2024. "Overall performance evaluation of a novel optical truncation method for compound parabolic concentrated photovoltaic-thermal system," Renewable Energy, Elsevier, vol. 228(C).
    10. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Meng, Chunfeng, 2021. "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems," Energy, Elsevier, vol. 215(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    2. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    4. Shan, Feng & Fang, Guiyin & Zhao, Lei & Zhu, Yunzhi, 2024. "Optical, electrical, and thermal performance of low-concentrating photovoltaic/thermal system using microencapsulated phase change material suspension as a coolant," Renewable Energy, Elsevier, vol. 227(C).
    5. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    7. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    8. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    9. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    10. Liu, Zhenghao & Zhang, Heng & Cheng, Chao & Huang, Jiguang, 2021. "Energetic performance analysis on a membrane distillation integrated with low concentrating PV/T hybrid system," Renewable Energy, Elsevier, vol. 179(C), pages 1815-1825.
    11. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    12. Dengxin Ai & Ke Xu & Heng Zhang & Tianheng Chen & Guilin Wang, 2022. "Simulation Research on a Cogeneration System of Low-Concentration Photovoltaic/Thermal Coupled with Air-Source Heat Pump," Energies, MDPI, vol. 15(3), pages 1-25, February.
    13. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Yang Liu & Han Yue & Na Wang & Heng Zhang & Haiping Chen, 2020. "Design and Transient Analysis of a Natural Gas-Assisted Solar LCPV/T Trigeneration System," Energies, MDPI, vol. 13(22), pages 1-24, November.
    15. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    16. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    17. Kai, Liang & Heng, Zhang & Haiping, Chen & Jiguang, Huang & Xinxin, Guo, 2020. "The comparison study between different battery and channel of the LCPV/T systems under concentration ratio 4," Energy, Elsevier, vol. 191(C).
    18. Fuentes, M. & Vivar, M. & de la Casa, J. & Aguilera, J., 2018. "An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 110-120.
    19. Xu, Shi-Jie & Wu, Shuang-Ying & Xiao, Lan & Xue, Pei & Wang, Chong-Yang, 2024. "Overall performance evaluation of a novel optical truncation method for compound parabolic concentrated photovoltaic-thermal system," Renewable Energy, Elsevier, vol. 228(C).
    20. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:177:y:2019:i:c:p:66-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.