IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v93y2018icp110-120.html
   My bibliography  Save this article

An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV

Author

Listed:
  • Fuentes, M.
  • Vivar, M.
  • de la Casa, J.
  • Aguilera, J.

Abstract

The idea of combining both thermal and photovoltaic collectors in hybrid photovoltaic-thermal (PV-T) modules actually shows a great potential for integration on facades and rooftops of buildings, mainly because of the reduced available space and the benefits of the on-site electricity and thermal generation. The objective of this work is to compare the real performance (experimental data obtained under real sun during a year) of a commercial hybrid PV-T system vs. a simple PV system using microinverters, assessing the suitability of one-unit hybrid PV-T systems vs. two separated units – PV systems + Thermal systems – for building integration. The combined efficiency over the span of a full day could reach values up to 80%, but this apparent high value needs to be analysed in detail. From the experimental results, it can be observed that both systems, PV and PV-T, have a good electrical performance. But the PV-T system output does not benefit from the lower module temperatures that it should achieve from the active cooling in its back, presenting the same performance as the simple PV system. Regarding the microinverters configuration performance, it has been very positive working with high efficiencies above 96%, justifying its use in this type of applications. In conclusion, the commercial PV-T system has not performed as expected, showing problems with the integration of the active cooling in the back of the PV modules. At this moment, and despite the potential of PV-T systems for BIPV due to space limitations, commercial PV-T systems are still far from PV and Thermal systems using separately.

Suggested Citation

  • Fuentes, M. & Vivar, M. & de la Casa, J. & Aguilera, J., 2018. "An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 110-120.
  • Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:110-120
    DOI: 10.1016/j.rser.2018.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118303654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anil & Baredar, Prashant & Qureshi, Uzma, 2015. "Historical and recent development of photovoltaic thermal (PVT) technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1428-1436.
    2. Gan, Guohui, 2009. "Effect of air gap on the performance of building-integrated photovoltaics," Energy, Elsevier, vol. 34(7), pages 913-921.
    3. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    4. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    5. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    6. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    2. Md Tofael Ahmed & Masud Rana Rashel & Mahmudul Islam & A. K. M. Kamrul Islam & Mouhaydine Tlemcani, 2024. "Classification and Parametric Analysis of Solar Hybrid PVT System: A Review," Energies, MDPI, vol. 17(3), pages 1-24, January.
    3. Saeed Abdul-Ganiyu & David A Quansah & Emmanuel W Ramde & Razak Seidu & Muyiwa S. Adaramola, 2020. "Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana," Energies, MDPI, vol. 13(11), pages 1-17, May.
    4. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Evangelos I. Sakellariou & Petros J. Axaopoulos & Ioannis E. Sarris & Nodirbek Abdullaev, 2021. "Improving the Electrical Efficiency of the PV Panel via Geothermal Heat Exchanger: Mathematical Model, Validation and Parametric Analysis," Energies, MDPI, vol. 14(19), pages 1-22, October.
    6. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    7. Iván Acosta-Pazmiño & Carlos Rivera-Solorio & Miguel Gijón-Rivera, 2020. "Energetic and Economic Analyses of an LCPV/T Solar Hybrid Plant for a Sports Center Building in Mexico," Energies, MDPI, vol. 13(21), pages 1-17, October.
    8. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Ahmed Mohamed Soliman, 2023. "A Numerical Investigation of PVT System Performance with Various Cooling Configurations," Energies, MDPI, vol. 16(7), pages 1-25, March.
    10. Renata Włodarczyk, 2022. "Analysis of the Photovoltaic Waste-Recycling Process in Polish Conditions—A Short Review," Sustainability, MDPI, vol. 14(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    3. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    4. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    5. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    6. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    7. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    8. Mojumder, Juwel Chandra & Ong, Hwai Chyuan & Chong, Wen Tong & Izadyar, Nima & Shamshirband, Shahaboddin, 2017. "The intelligent forecasting of the performances in PV/T collectors based on soft computing method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1366-1378.
    9. Hassani, Samir & Taylor, Robert A. & Mekhilef, Saad & Saidur, R., 2016. "A cascade nanofluid-based PV/T system with optimized optical and thermal properties," Energy, Elsevier, vol. 112(C), pages 963-975.
    10. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    11. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    12. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.
    15. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    17. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    18. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    19. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    20. Widyolar, Bennett & Jiang, Lun & Brinkley, Jordyn & Hota, Sai Kiran & Ferry, Jonathan & Diaz, Gerardo & Winston, Roland, 2020. "Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:110-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.