IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220317023.html
   My bibliography  Save this article

Design and performance analysis of an annular fresnel solar concentrator

Author

Listed:
  • Liang, Kai
  • Xue, Kaili
  • Zhang, Heng
  • Chen, Haiping
  • Ni, Jianxiong

Abstract

In this paper, an annular Fresnel solar concentrator (AFSC) is proposed. This novel concentrator was incorporated with a series of annular mirrors, and its performance was simulated using MATLAB software. The influences of different structures were also simulated. The tracking deviation, device deviation, and comprehensive deviation were analysed using different deviation angles. The results demonstrated that this concentrator could simply adjust the concentrating ratio, which reached 300 when the maximum concentrator height was 0.78 m and the maximum diameter was only 1.72 m. Non-linear changes in the performance of the annular Fresnel reflector occurred when the structure size increased linearly. Further, the radiation distribution and performance of the annular Fresnel reflector were found with different deviations. When the tracking deviation angle was 0.5°, the receiving rate was 98.37%. This new AFSC has excellent concentrated solar power (CSP) application prospects.

Suggested Citation

  • Liang, Kai & Xue, Kaili & Zhang, Heng & Chen, Haiping & Ni, Jianxiong, 2020. "Design and performance analysis of an annular fresnel solar concentrator," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317023
    DOI: 10.1016/j.energy.2020.118594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Vashi & Khanna, Sourav & Nayak, Jayanta K. & Kedare, Shireesh B., 2016. "Effects of shading and blocking in compact linear fresnel reflector field," Energy, Elsevier, vol. 94(C), pages 633-653.
    2. Natarajan, M. & Srinivas, T., 2017. "Experimental and simulation studies on a novel gravity based passive tracking system for a linear solar concentrating collector," Renewable Energy, Elsevier, vol. 105(C), pages 312-323.
    3. Hua, L.J. & Jiang, Y. & Ge, T.S. & Wang, R.Z., 2018. "Experimental investigation on a novel heat pump system based on desiccant coated heat exchangers," Energy, Elsevier, vol. 142(C), pages 96-107.
    4. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
    5. Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
    6. Saadon, Syamimi & Gaillard, Leon & Giroux-Julien, Stéphanie & Ménézo, Christophe, 2016. "Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope," Renewable Energy, Elsevier, vol. 87(P1), pages 517-531.
    7. Balaji, Shanmugapriya & Reddy, K.S. & Sundararajan, T., 2016. "Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors," Applied Energy, Elsevier, vol. 179(C), pages 1138-1151.
    8. Craig, K.J. & Moghimi, M.A. & Rungasamy, A.E. & Marsberg, J. & Meyer, J.P., 2016. "Finite-volume ray tracing using Computational Fluid Dynamics in linear focus CSP applications," Applied Energy, Elsevier, vol. 183(C), pages 241-256.
    9. Zhang, Heng & Chen, Haiping & Han, Yuchen & Liu, Haowen & Li, Mingjie, 2017. "Experimental and simulation studies on a novel compound parabolic concentrator," Renewable Energy, Elsevier, vol. 113(C), pages 784-794.
    10. Chen, Haiping & Zhang, Heng & Li, Mingjie & Liu, Haowen & Huang, Jiguang, 2018. "Experimental investigation of a novel LCPV/T system with micro-channel heat pipe array," Renewable Energy, Elsevier, vol. 115(C), pages 773-782.
    11. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    12. Fernández, A.G. & Ushak, S. & Galleguillos, H. & Pérez, F.J., 2014. "Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants," Applied Energy, Elsevier, vol. 119(C), pages 131-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tieliu Jiang & Tianlin Zou & Gang Wang, 2023. "Comparative Analysis of Thermodynamic Performances of a Linear Fresnel Reflector Photovoltaic/Thermal System Using Ag/Water and Ag-CoSO 4 /Water Nano-Fluid Spectrum Filters," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
    2. Beltagy, Hani, 2021. "The effect of glass on the receiver and the use of two absorber tubes on optical performance of linear fresnel solar concentrators," Energy, Elsevier, vol. 224(C).
    3. Heng Zhang & Na Wang & Kai Liang & Yang Liu & Haiping Chen, 2021. "Research on the Performance of Solar Aided Power Generation System Based on Annular Fresnel Solar Concentrator," Energies, MDPI, vol. 14(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    2. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    3. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    4. López-Alvarez, José A. & Larraneta, Miguel & Silva-Pérez, Manuel A. & Lillo-Bravo, Isidoro, 2020. "Impact of the variation of the receiver glass envelope transmittance as a function of the incidence angle in the performance of a linear Fresnel collector," Renewable Energy, Elsevier, vol. 150(C), pages 607-615.
    5. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    6. Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2019. "On the optimal shape of secondary reflectors for linear Fresnel collectors," Renewable Energy, Elsevier, vol. 143(C), pages 1454-1464.
    7. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    8. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    9. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    10. Heng, Zhang & Feipeng, Chen & Yang, Liu & Haiping, Chen & Kai, Liang & Boran, Yang, 2019. "The performance analysis of a LCPV/T assisted absorption refrigeration system," Renewable Energy, Elsevier, vol. 143(C), pages 1852-1864.
    11. El-Samie, Mostafa M. Abd & Ju, Xing & Zhang, Zheyang & Adam, Saadelnour Abdueljabbar & Pan, Xinyu & Xu, Chao, 2020. "Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system," Energy, Elsevier, vol. 190(C).
    12. Haiping, Chen & Jiguang, Huang & Heng, Zhang & Kai, Liang & Haowen, Liu & Shuangyin, Liang, 2019. "Experimental investigation of a novel low concentrating photovoltaic/thermal–thermoelectric generator hybrid system," Energy, Elsevier, vol. 166(C), pages 83-95.
    13. Liu, Zhenghao & Zhang, Heng & Cheng, Chao & Huang, Jiguang, 2021. "Energetic performance analysis on a membrane distillation integrated with low concentrating PV/T hybrid system," Renewable Energy, Elsevier, vol. 179(C), pages 1815-1825.
    14. Dengxin Ai & Ke Xu & Heng Zhang & Tianheng Chen & Guilin Wang, 2022. "Simulation Research on a Cogeneration System of Low-Concentration Photovoltaic/Thermal Coupled with Air-Source Heat Pump," Energies, MDPI, vol. 15(3), pages 1-25, February.
    15. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    16. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    17. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    18. Liu, Yang & Zhang, Heng & Chen, Haiping, 2020. "Experimental study of an indirect-expansion heat pump system based on solar low-concentrating photovoltaic/thermal collectors," Renewable Energy, Elsevier, vol. 157(C), pages 718-730.
    19. Liang, Kai & Zhang, Heng & Chen, Haiping & Gao, Dan & Liu, Yang, 2021. "Design and test of an annular fresnel solar concentrator to obtain a high-concentration solar energy flux," Energy, Elsevier, vol. 214(C).
    20. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.