IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i2p179-195.html
   My bibliography  Save this article

Comparison of the theoretical performance potential of fuel cells and heat engines

Author

Listed:
  • Wright, S.E.

Abstract

Fuel cells have decided advantages including compatibility with renewable fuels such as hydrogen, methanol and methane. It is often claimed that they have greater potential for efficient operation than heat engines because they are not restricted by the Carnot limitation. However, in this paper a generalized (exergy analysis) approach is utilized to clarify the comparison of the theoretical performance potential of heat engines and fuel cells, in particular, to show that fuel cell conversion is restricted by the second law of thermodynamics in the same way as heat engines. The Carnot efficiency is simply a manifestation of the second law for the heat engine excluding the combustion process. It is shown that the maximum work obtainable from the conversion device is related to the change in flow exergy between reactants and products, that is in general, not equivalent to the change in Gibbs free energy. For equivalent reactant and product temperatures, the difference between the change in Gibbs free energy and the change in flow exergy is equal to the exergy flux of heat transfer that must be rejected by the device due to absorption of entropy from the reactant-product flow. The importance of exergetic (second-law) efficiencies for evaluating performance is demonstrated. Also, exergy analysis is utilized to resolve a number of efficiency related issues for endothermic reactions.

Suggested Citation

  • Wright, S.E., 2004. "Comparison of the theoretical performance potential of fuel cells and heat engines," Renewable Energy, Elsevier, vol. 29(2), pages 179-195.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:2:p:179-195
    DOI: 10.1016/S0960-1481(03)00191-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103001915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00191-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophe Coutanceau & Stève Baranton, 2016. "Electrochemical conversion of alcohols for hydrogen production: a short overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 388-400, July.
    2. Schenone, Corrado & Borelli, Davide, 2014. "Experimental and numerical analysis of gas distribution in molten carbonate fuel cells," Applied Energy, Elsevier, vol. 122(C), pages 216-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:2:p:179-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.